ON THE POSITIVITY CONJECTURE: A DIGEST OF MASON'S COUNTEREXAMPLE

YILONG WANG

1. INTRODUCTION

In this note, we give an explicit construction of a counterexample to the positivity conjecture on the second Frobenius-Schur indicators of a modular category. The positivity conjecture can be formulated in the following way [Wan10, Conjecture 4.26]:

Let \mathcal{C} be a modular category, and let X, Y be simple objects of \mathcal{C} . Then $N_{X,X^*}^Y > 0$ implies $\nu_2(Y) = 1$.

We will borrow ideas from Mason's preprint [Mas17], but our example comes from a smaller group than that in [Mas17]. In Section 3, we give the explicit character data of the counterexample implemented in GAP.

We thank Professor Richard Ng for helpful discussions and suggestions.

2. Construction of a counterexample

Let $Q := Q_8 = \langle a, b \mid a^4 = 1, a^2 = b^2, b^{-1}ab = a^{-1} \rangle$ be the quaternion group. It is easy to check that the assignment $\alpha : Q \to \operatorname{GL}(2,3)$, given on generators by

$$a \mapsto \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}, \ b \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

embeds Q into GL(2,3) as a subgroup. Therefore, Q acts faithfully on $H := (\mathbb{Z}/3\mathbb{Z})^2$ by (left) matrix multiplication (with column vectors). For any $q \in Q$ and any $h \in H$, we denote this action by $q \cdot h$.

Let $G := H \rtimes_{\alpha} Q$ be the semidirect product of H and Q with respect to α . As subgroups of G, Q acts on H by conjugation (in G). Note that G is of order 72. Let $\lambda : H \to \mathbb{C}^{\times}$ be a character of H defined by

$$\lambda(x, y) := \omega^{y-x}$$

for any $(x,y) \in H = (\mathbb{Z}/3\mathbb{Z})^2$, where $\omega = \exp(\frac{2\pi i}{3})$. Let $\chi := \operatorname{ind}_H^G(\lambda)$ be the representation of G induced by λ .

Proposition 1. The representation χ is irreducible.

Proof. We prove the irreducibility of χ by computing its character. By the character formula of induced representations ([Ser77, Theorem 12]), for any $g \in G$, we have

$$\operatorname{char}(\chi)(g) = \sum_{\substack{q \in Q \\ q^{-1}gq \in H}} \lambda(q \cdot g) = \begin{cases} 0, & \text{if } g \notin H \\ -1, & \text{if } g \in H \setminus \{e_G\} \\ 8, & \text{if } g = e_G \end{cases}$$

where e_G stands for the identity of G.

Therefore, the character inner product (following notations in [Ser77]) of χ with itself is given by

$$(\operatorname{char}(\chi)|\operatorname{char}(\chi)) = \frac{1}{72} \sum_{g \in G} |\operatorname{char}(\chi)|^2 = \frac{1}{72} \times (8^2 + (-1)^2 \times 8) = 1.$$

Hence, by [Ser77, Theorem 3], χ is irreducible.

Remark 1. We can also apply Mason's idea to give an alternative proof of the irreducibility of χ , which goes as follows. By a corollary of Mackey's irreducibility criterion of induced representations ([Ser77, Corollary 7.4.23]), χ is irreducible if and only if

(1) λ is irreducible;

(2) ${}^{g}\lambda \neq \lambda$ for every $g \notin H$.

Here, ${}^{g}\lambda : H \to \mathbb{C}^{\times}$ is defined by ${}^{g}\lambda(h) := \lambda(g^{-1}hg)$ for any $h \in H$. It is clear that λ is irreducible, so it remains to prove (2), which is the result of direct computation using the expression for λ .

We proceed with the following known facts. Firstly, Q has four 1-dimensional (denoted by $\gamma_1, ..., \gamma_4$) and one 2-dimensional irreducible representation (denoted by ϕ). Moreover, direct computation shows that $\nu_2(\phi) = -1$. In addition, by dimension counting, χ is the unique 8-dimensional representation of G with $\nu_2(\chi) = 1$.

Since $\operatorname{Rep}(Q)$ is a braided (symmetric) spherical fusion full subcategory of $\operatorname{Rep}(G)$, any irreducible representation of Q can be viewed as an irreducible representation of G by pre-composing the quotient map $G \twoheadrightarrow Q$. In addition, for any $X \in \operatorname{Rep}(Q)$, its dimension and its second Frobenius-Schur indicator $\nu_2(X)$ computed in $\operatorname{Rep}(Q)$ is the same as $\nu_2(X)$ computed in $\operatorname{Rep}(G)$. More precisely, let $\xi \in \operatorname{Rep}(Q)$, by definition, $\nu_2(\xi)$ in $\operatorname{Rep}(Q)$ and in $\operatorname{Rep}(G)$ are given respectively as

$$\nu_2(\xi)_{\operatorname{Rep}(Q)} = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{char}(\xi)(q^2),$$

and

$$\nu_2(\xi)_{\operatorname{Rep}(G)} = \frac{1}{|G|} \sum_{g \in G} \operatorname{char}(\xi)(g^2).$$

By definition, when we view ξ as in $\operatorname{Rep}(G)$, we have $\xi(gh) = \xi(g)$ for any $g \in G$ and $h \in H$. Therefore, by the fact that $Q \cong G/H$, we have

$$\nu_2(\xi)_{\operatorname{Rep}(G)} = \frac{1}{|G|} \sum_{g \in G/H} \operatorname{char}(\xi)(g^2) |H| = \frac{1}{|Q|} \sum_{q \in Q} \operatorname{char}(\xi)(q^2) = \nu_2(\xi)_{\operatorname{Rep}(Q)}.$$

Similar argument holds for $\operatorname{Rep}(D(G))$. More precisely, since both $\operatorname{Rep}(Q)$ and $\operatorname{Rep}(G)$ are braided (symmetric) spherical fusion full subcategory of $\operatorname{Rep}(D(G))$, for any $X \in \operatorname{Rep}(Q)$, and for any $Y \in \operatorname{Rep}(G)$, we have

$$\nu_2(X)_{\operatorname{Rep}(Q)} = \nu_2(X)_{\operatorname{Rep}(D(G))}$$

and

$$\nu_2(Y)_{\operatorname{Rep}(G)} = \nu_2(Y)_{\operatorname{Rep}(D(G))}.$$

In particular, we have

(1)
$$\nu_2(\phi)_{\operatorname{Rep}(D(G))} = \nu_2(\phi)_{\operatorname{Rep}(Q)} = -1$$

 $\mathbf{2}$

Let ρ_G be the regular representation of G. It is standard that

$$\rho_G = \bigoplus_{j=1}^4 \gamma_j \oplus 2\phi \oplus 8\chi.$$

Theorem 1. The 2-dimensional representation ϕ is a constituent of $\chi \otimes \chi$ in $\operatorname{Rep}(G)$.

Proof. It is well-known (or see Appendix) that

(2)
$$\rho_G \otimes \phi = \rho_G^{\oplus \deg(\phi)} = \rho_G \oplus \rho_G = 2 \bigoplus_{j=1}^4 \gamma_j \oplus 4\phi \oplus 16\chi.$$

Decomposing the left hand side, we have

$$\rho_G \otimes \phi = 4\phi \oplus 2 \bigoplus_{j=1}^4 \gamma_j \oplus (8\chi \otimes \phi),$$

where the first two summands are derived from the familiar representation theory of Q. Comparing both sides of Equation (2), we have

$$\chi\otimes\phi=2\chi$$

In other words, $\operatorname{Hom}_{\operatorname{Rep}(G)}(\chi \otimes \phi, \chi) \neq 0$, which implies that $\operatorname{Hom}_{\operatorname{Rep}(G)}(\chi \otimes \chi, \phi) \neq 0$, as both χ and ϕ are self-dual.

As pointed out before, we can view χ and ϕ as objects in the modular category $\operatorname{Rep}(D(G))$. Since $\operatorname{Rep}(G)$ is a fusion full subcategory of $\operatorname{Rep}(D(G))$, we will still have $N_{\chi,\chi}^{\phi} = 2$ in $\operatorname{Rep}(D(G))$. Together with Equation (1) and Theorem 1 we have

Theorem 2. In the modular category $\operatorname{Rep}(D(G))$, there exist irreducible representations $\chi, \phi \in \operatorname{Irr}(\operatorname{Rep}(D(G)))$ such that $N_{\chi,\chi^*}^{\phi} = N_{\chi,\chi}^{\phi} = 2$ and $\nu_2(\phi) = -1$. \Box

The above theorem nullifies the positivity conjecture.

Remark 2. Equation (3) implies that ν_2 is not a fusion character. Indeed, by definition and the linearity of ν_2 , we have

$$\nu_2(\chi \otimes \phi) = \nu_2(2\chi) = 2\nu_2(\chi) = 2,$$

while

$$\nu_2(\chi) \times \nu_2(\phi) = 1 \times (-1) = -1.$$

3. GAP IMPLEMENTATION

In fact, we can identify G with PSU(3,2) whose GAP ID is SmallGroup(72, 41). We use the following code in GAP to get the information we need.

We first get the information of irreducible representations of G by

G:=SmallGroup(72,41);; Irr(G); The output is

YILONG WANG

[Character(CharacterTable(<pc group of size 72 with 5 generators>), [1, 1, 1, 1, 1, 1]), Character(CharacterTable(<pc group of size 72 with 5 generators>), [1, -1, -1, 1, 1, 1]), Character(CharacterTable(<pc group of size 72 with 5 generators>), [1, -1, 1, 1, 1, -1]), Character(CharacterTable(<pc group of size 72 with 5 generators>), [1, 1, -1, 1, 1, -1]), Character(CharacterTable(<pc group of size 72 with 5 generators>), [1, 0, 0, -2, 2, 0]), Character(CharacterTable(<pc group of size 72 with 5 generators>), [2, 0, 0, -2, 2, 0]), Character(CharacterTable(<pc group of size 72 with 5 generators>), [8, 0, 0, 0, -1, 0])]

We can see that among the 6 irreducible representations, there is a unique 8dimensional representation, which is denoted by χ in the previous section.

Next, we compute the second Frobenius-Schur indicator of the above irreducible representations

Indicator(CharacterTable(G), 2);

The output is

4

[1, 1, 1, 1, -1, 1]

This means the 2-dimensional irreducible representation of G has -1 as its ν_2 . Finally, we decompose $\chi \otimes \chi$ into irreducible representations

ConstituentsOfCharacter(Irr(G)[6]*Irr(G)[6]);

The output is

[Character(CharacterTable(<pc group of size 72 with 5 generators>),
[1, -1, -1, 1, 1, 1]),
Character(CharacterTable(<pc group of size 72 with 5 generators>),

[1, -1, 1, 1, 1, -1]), Character(CharacterTable(<pc group of size 72 with 5 generators>),

[1, 1, -1, 1, 1, -1]), Character(CharacterTable(<pc group of size 72 with 5 generators>), [1, 1, 1, 1, 1, 1]),

Character(CharacterTable(<pc group of size 72 with 5 generators>), [2, 0, 0, -2, 2, 0]),

Character(CharacterTable(<pc group of size 72 with 5 generators>), [8, 0, 0, 0, -1, 0])]

We can see that the 2-dimensional irreducible representation of G is indeed a constituent of $\chi \otimes \chi$.

Appendix

For any braided spherical fusion category \mathcal{C} , let $\operatorname{Irr}(\mathcal{C})$ denote the set of isomorphism class of simple objects, and let d_X be the categorical dimension of $X \in \mathbb{C}$. Let $R := \sum_{X \in \operatorname{Irr}(\mathcal{C})} d_X X$ be the regular element in the Grothendieck algebra of \mathcal{C} .

Lemma 1. For any $V \in C$, we have the equality in the Grothendieck algebra of C

 $RV = d_V R.$

Proof.

(4)

$$RV = \left(\sum_{X \in \operatorname{Irr}(\mathcal{C})} d_X X\right) V$$
$$= \sum_{X \in \operatorname{Irr}(\mathcal{C})} d_X \sum_{Y \in \operatorname{Irr}(\mathcal{C})} N_{X,V}^Y Y$$
$$= \sum_{Y \in \operatorname{Irr}(\mathcal{C})} Y \sum_{X \in \operatorname{Irr}(\mathcal{C})} N_{V,Y^*}^{X^*} d_{X^*}$$
$$= \sum_{Y \in \operatorname{Irr}(\mathcal{C})} d_Y d_V Y$$

 $= d_V R.$

References

- [Mas17] Geoffrey Mason. A brief history of the positivity conjecture in tensor category theory. ArXiv e-prints, March 2017.
- [Ser77] Jean-Pierre Serre. Linear representations of finite groups. Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42.
- [Wan10] Zhenghan Wang. Topological quantum computation, volume 112 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2010.