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Lecture I

Motivation Historical remark

notnee associative
Algebraic topology

typologicalspace multiplication

Hopf 1940s H space X m m x x x x continuous

sit left and rightmultiplication are homotopic to id

H X has cup product and a coproduct providedby m

0 H x H Xxx H x O H X
the
field

If X is apt connmfld H x is finite dim'd graded unital

O and cap product are compatible

If K is of char 0 then H x is an exterior algebra generated

by homogeneous elements of odddegree H x E H S
odd

x Soddy xsodd

Borel Samelson Leroy more like bialgebra

in modern term

Algebraic group 1k vector

Let G be a group RIG thespareof representative functions
G Ik

Generated by matrix coefficient functions of representationsof G



I G GLN Tig Excl

A natural coproduct provided by group multiplication
D R G RIG XG R G OK RIG

sit Ocu g ox h u gh SimplyTet
D Vij a Iz dik T O U kj a

RIG itself is an algebra w pointwisemultiplication
0 algebra homomorphism

twomore algebra'Ytiomomorphisms

S R G RIG

Su g neg

E R G Ik

E u U IG

Another protypical example U of

Commutative Hopf algebras are essentially the same as affine group
scheme

If kik and chark o then'tcocommutative Hopf algebra is

of the form Ucof I'KG

A primeon Hopfalgebras

Cartier Gabriel Konstant Milnor Moore

Tensor categories

Rep H good source for nice monoidal category



Tannaka Kreinduality Tannakian category

Structure theory I classification

Quantum groups

Yang Baxterequation integrablesystem Uq of quasi triangular

Quantum topology I algebra
Invariants of knots links I 3 mfld topologicalquantumfieldtheory

modular tensor categories



1 Definitions

1 1 Algebra and coalgebras

Let Ik be a field
TDEI A k algebra is a triple A M M where A is a th vector

space M A Q A A and Y Ik A ane k linearmaps

satisfying

a associativity

A A A Fid A gA

id am I 2 In
A OpA e

A

b unit A OpA
maid Im Midian
Ikoma A É AOak

We call u the product multiplication ofA and y the unit of A 1

Notation Q for Qi 711 1A E A

Example IGroupalgebra

Let G be a finite group The K vector space

K G gi ag g I ag elk

has a natural algebra structure M IKG KG 1k



alg

Mcg oh gh groupmalt

7111 1G C group unit

MMaid Midan a Craig ghost
u Tgh ok ghk

MCidOu goh Ok a lg ahk ghk

IkG M Y is an algebra calledthegroupalgebra of G

Example Tensor algebra

Let Il be a tk vectorspace Let 1100 1k then the vectorspace

T Y go V0 has a natural algebra structure

induced from 110M O V0 I 11
nth

It m n z o

More precisely M TCU Q TLV TN determinedby

µ K Q 0 am Q i 0 Oyn N O AmOxy Q Oyn

H d O Rm E V M
Y Q Yn E V0 It m n 3 0

Y I I E IR V00 E T Y

A
Mcdaid

to goÉTW QTW TN t

ftp.fifItucidoxu



TN M Y is an algebra called the tensor algebraof V

TDE For A vectorspaces II IN the twistmap is the K linear map
T V0 IN INOV
1 NO w n w Ov It well we V4 ITy IN

An algebra A M Y is commutative Mota M

TDEI A th coalgebra is a triple C A E where C is a

Ik vector space A C CO C and E C Ik are 1k linear

maps satisfying Ig
o f

Coc

a coassociativity
2 to aid

COC
i COCO C

a count

iÉÉÉÉdak
FEE

We call A the coproduct comultiplication of C E the countof C
We say C is cocommutative if to 4 A I

Abuseof notation For any TR vectorspace 11 we sometimes automatically

identify 112011 and 1101k wk
11 by writing xoxo no van



with

for all well AElk

Example Let G be a finitegroup Define A KG AGO KG by

big gag and E 1126 IR Ecg 1 for all ge G
Then TkG D E is a coalgebra

ayyy

aid 0cg LODGE gag og

Letty Cid 00 0 q

Eaid 01g Maida Ecg Og g
idoe 0 g idQE gog g oxEcg

Example Let of be a lie algebra over 11 and TCof its tensor algebra

Theuniversal enveloping algebraof of is defined to be

N of TCG I og

where I Y is the two sided ideal of TCG generated by all elements

of the form ay yo ta y where x y e of
Utoy is a Ik algebra

Define 0 Acop U of OU of by
Ocd not tax tacos extend by omg

ÉÉÉÉy
011 10 1 recall 112 900 ETCof

so that 0 is an algebra homomorphism

E acop Ik
E x O H x EG E l'D 1



Then we have

id Q D 0 x id QO X Q I t 10 x XOXO I t I 0 O Ix

X Q I I t l a x I 1 a
viewed as element inTroy

0 a Q1 t old ox o o id oke

EQ id 0 x aid x Q1 10x x Ex Q I t ECD Ox

I Ox f x

viewedaselement inbarefield

Ucf O E is a coalgebra

TDEI Let C Oc Ec and D Op Ep be coalgebras A 112 linear

map f C D is a coalgebra homomorphism if thediagrams

C
f

D

do I 2 y o
c f p

Ec I ED

COXC É pop R

are commutative A subspace I E C is a two sided co ideal

if DCI E LOC t COI and if E I 0 I

TDE The opposite algebra of an algebra A M Y is the triple
AOP mop not A Moe Y

The opposite coalgebra of a coalgebra C D E is the triple
ecop Oop UP C E o D E I


