Lecture 12
Last time: Character theory of fin. dim'l s.s. Hops algebras.

$$
R(H)=\operatorname{span}_{k}\left\{x_{j}\right\} \subseteq H^{*} \quad x_{i} \times x_{j}=\sum_{l} \sum_{\mathbb{Z}_{\geqslant 0}}^{N_{i, j}^{l}} x_{l}
$$

Class equation: $\mathbb{k}=\bar{k}$, char $(\mathbb{k})=0$. If $\left\{e_{0}, \cdots, e_{m}\right\}$ is a complete set of primitive orthogonal idempotent in $R(H), w_{0} \in \int_{H^{*}}$, then for each $0 \in i \leq m$, $\operatorname{dim}\left(e_{i} H^{*}\right)$ livides $\operatorname{dim}(H)$, and

$$
\operatorname{dim}(H)=1+\sum_{i=1}^{m} \operatorname{dim}\left(e_{i} H^{*}\right)
$$

Key ingredient: to show $d=\frac{\operatorname{dim}(H)}{\operatorname{dim}\left(e_{i} H^{*}\right)} \quad \in \mathbb{Z}$, it suffices to show $d \in \mathcal{O}$ (algebraic integer). Essentially this follows from $N_{i, j}^{l} \in \mathbb{Z}$.

Applications / Examples.

When $H=\mathbb{k} G$, then the theorem reduces to the usual class equation for finite group. Indeed, we have

$$
f \in R(H) \Leftrightarrow f\left(g h g^{-1}\right)=f(h), \forall g, h \in G \Leftrightarrow f \text { is a class function }
$$

Thus. $e_{i}=\sum_{g \in C_{i}} \delta_{g}$, where C_{i} is the i-th conjugacy class of G, and $\operatorname{dim}\left(e_{i} H^{*}\right)=\left|C_{i}\right|$, which divides $|G|$.

When $H=(\mathbb{k} G)^{*}, \quad H \cong \mathbb{k}^{\oplus \mid G 1}$, and there are $|G|$ linearly independent characters. In this case, $R(H)=H^{*}=\mathbb{M} G$, and the idempotents e_{i} in the class equation are just the primitive idempotent of $\mathbb{k} G$, and $e_{i} H^{*}$ are irreducible $\mathbb{R} G$-modules. Then the divisibility in the class equation in this case is Froberius' classical theorem that the degree of an irreducible G-module divides $|G|$.

THM 5.6 (thu). Suppose \mathbb{k} is an algebraically dosed field of characteristic 0 , and H is a semisimple Hops algeta of prime dimension p, then $H \cong \mathbb{K} \mathbb{Z} \mathbb{Z}$. PF. By the class equation, $p=1+\sum_{i>0} p^{t_{i}}$. This forces $t_{i}=0$ for all
$i>0$. Hence, there are p linearly independent characters of H, and $H \cong \mathbb{R}^{\oplus p}$. So. H is commutative and senisimple. so by $T H M$ 2.3.1, $H^{*} \cong \mathbb{R} \mathbb{Z} / p \mathbb{Z}$, and $H \cong \mathbb{k} \mathbb{Z} / p \mathbb{Z}$.
Actually, ${ }^{z h n}$ proved H is s.s. if $p \geqslant 3$, and the case $p=2$ is trivial. CHM 5.6 holds for all $\operatorname{dim}(H)=P, \mathbb{R}_{\mathbb{k}}=\overline{\mathbb{k}}$, char $(\mathbb{k})=0$.

In 1975, Kaplansky conjectured an analog of Frobenius' theorem for Howl algetres, which remains open. That is,

Conj. (Kaplansky). Let H be a finite dime semisimple Hops algesia over an algebraically dosed field of characteristic O. Then, for any in educible module V of H, we have $\operatorname{dim}(V) \mid \operatorname{dim}(H)$.

Chapter 3. Drinfeld double.
In this chapter, we consider arbitrary top algebras over arbitrary fields, unless specified.
"Commutativity"
§1. Quasitriangular Hop algebra.
DEE. An almost cocommutative Hops algebra is a pair (H, R), where H is a Hops algeha with bijective antipode S, and $R \in H \otimes H$ is an invertible element such that for all $h \in H$.

$$
\tau \Delta(h)=R \cdot \Delta(h) \cdot R^{-1}
$$

where τ is the usual swap mage.

In sigma notation, $\Sigma h_{2} \otimes h_{1}=R\left(\Sigma h_{1} \otimes h_{2}\right) \cdot R^{-1}$.

LEM 1.2 Let (H, R) be an almost cocommutative Hopf algeha, and let V, W le left H-modules. Then $V \otimes W \cong W \otimes V$ as left H-modules.
P_{F}. Define $\varphi: V \otimes W \rightarrow W \otimes V$ by $v \otimes w \mapsto R^{-1}(w \otimes v)$. Then. for all $h \in H$,

$$
\begin{align*}
& \varphi(h \cdot(v \otimes w))=R^{-1} \cdot\left(\Sigma h_{2} \otimes h_{1}\right) \cdot(w \otimes v) \\
= & \left(\sum_{1} h_{1} \otimes h_{2}\right) \cdot \underbrace{R^{-1}(w \otimes v)}_{\varphi(w \otimes w)}=h \cdot \varphi(v \otimes w) . \tag{2}
\end{align*}
$$

Example. Any cocommutative Hops algetra is almost cocommntative w/ $R=1_{H} \otimes 1_{H}$. However, such an H can abs be almost cocommutative ot a nontrivial R. On the other hand, if $H=(\mathbb{k} G)^{*}$ for some finite
monabelian group G, and take $g, h \in G$ sit. $g h \neq h g$. Then by the definition of the coproduct of H, we have, for $V=\mathbb{k} \delta_{g}, W=\mathbb{k} \delta_{h}$. that $\delta_{g h} \cdot(V \otimes W) \neq 0$, but $\delta_{g h} \cdot(W \otimes V)=0$, so $V \otimes W \neq W \otimes V$

$$
\zeta \delta_{x}=\sum_{\substack{y_{z}=x \\ y, z \in G}} \delta_{y} \otimes \delta_{z}
$$

as H-modules. Hence, H can not be almost cocommutative.

Recall from Prop 1.5.9, if H is cocommutative, then $S^{2}=i d$.

Prop 1.4 Let (H, R) be almost cocommutative. Then S° is inner. More precisely, write $R=\sum_{i} a_{i} \otimes b_{i}$ and $x=\sum_{i}\left(S b_{i}\right) a_{i} \in H$. Then, $u \in H^{x}$, and for all $h \in H$, we have $S^{2}(h)=u h u^{-1}=\left(S_{u}\right)^{-1} h\left(S_{u}\right)$. Consequently, $x\left(S_{u}\right) \in \underset{\uparrow}{Z}(H)$.

$$
{ }^{\uparrow} \text { center of } H \text {. }
$$

PF. We first show that for any $h \in H$,

$$
\begin{equation*}
u h=S^{2}(h) u . \tag{*}
\end{equation*}
$$

By definition, $\left(R \otimes 1_{H}\right)\left(\sum h_{1} \otimes h_{2} \otimes h_{3}\right)=\left(\sum_{1} h_{2} \otimes h_{1} \otimes h_{3}\right)\left(R \otimes I_{H}\right)$, and this can be rewritten as

$$
\begin{gathered}
\sum_{i} a_{i} h_{1} \otimes h_{i} h_{2} \otimes h_{3}=\sum h_{2} a_{i} \otimes h_{1} b_{i} \otimes h_{3} \\
\sum_{i} \sum_{\left(h_{1}\right)} a_{i} h_{(1)} \otimes \cdots \quad \begin{array}{l}
\text { perm. } \\
s^{2} \otimes s \otimes i d \\
\mu
\end{array}
\end{gathered}
$$

Thus, $\quad \sum_{i} S^{2}\left(h_{3}\right) \cdot S\left(b_{i} h_{2}\right) \cdot a_{i} h_{1}=\sum_{i} s^{2}\left(h_{3}\right) \cdot S\left(h_{1} b_{i}\right) \cdot h_{2} a_{i}$

$$
\begin{aligned}
& \text { LH }=\sum_{i} S\left(b_{i} h_{2} S\left(h_{3}\right)\right) \cdot a_{i} h_{1}=\sum_{i} S\left(b_{i}\right) a_{i} h=u h \\
& \text { RUS }=\sum_{i} S^{2}\left(h_{3}\right) S\left(b_{i}\right) S\left(h_{1}\right) h_{2} a_{i}=S^{2}(h) u .
\end{aligned}
$$

and this proves (*).

Next, we show that $u \in H^{x}$. Write $R^{-1}=\sum_{j} c_{j} \otimes \mathbb{d}_{j}$ and set $v=\sum_{j} S^{-1}\left(d_{j}\right) c_{j}$, then, by $(*)$, we have

$$
\begin{aligned}
& u v=\sum_{j} u \cdot S^{-1}\left(d_{j}\right) c_{j}=\sum_{j} S\left(d_{j}\right) u c_{j}=\sum_{i, j} S\left(b_{i} d_{j}\right) a_{i} c_{j} \\
&= \mu \tau(i d \otimes S)(\underbrace{R R^{-1}}_{\downarrow})=1_{H} . \\
& \sum_{i, j} a_{i} c_{j} \otimes b_{i} d_{j}=1_{H} \otimes 1_{H} .
\end{aligned}
$$

Thus, by (*), $S^{2}(v) u=1_{H}$, so $u \in H^{x}$, and $S^{2}(h)=u h u^{-1}$. Applying S on both sides. we have $S^{2}(S h)=(S u)^{-1} \cdot(S h)$. Sa, so by the bijectivity of S. $S^{2}(h)=\left(S_{u}\right)^{-1} h \cdot S_{u}$. Now $S^{-2}(h)=u^{-1} h u$ $=(S u) h\left(S_{u}\right)^{-1}$, so $u\left(S_{u}\right) \in Z(H)$.

DEF. An almost cocommutative Hoff algebra (H, R) is quasitriangular (QT) if $R=\sum_{i} a_{i} \otimes b_{i}$ satisfies the following conditions:
(1.1) $(\Delta \otimes i d) R^{2}=R^{13} R^{23}$, and $($ id $\otimes \Delta) R=R^{13} R^{12}$, where $R^{12}=\sum_{i} a_{i} \otimes b_{i} \otimes I_{H}, \quad R^{23}=\sum_{i} 1_{H} \otimes a_{i} \otimes b_{i}$, and
$R^{13}=\sum_{i} a_{i} \otimes I_{H} \otimes b_{i}$. In this case, R is called a universal R-matrix
of H. A QT Hoof algebra is triangular of $R^{-1}=\tau(R)$.

In general, for any QT Hops algebra (H, R) w/ $R=\sum_{i} a_{i} \otimes b_{i}$, and for any $x \geqslant 2$ (given by the context), $R^{j k}$ is understood as an x-fold tensor \wedge and j, k indicates the positions of a_{i} and b_{i} if all components 1_{H} except for the j and k-th position,

$$
\begin{array}{ll}
n=2, & R^{21}=\sum b_{i} \otimes a_{i}, \\
n=4, & R^{14} \cdot R^{23}=\sum_{i, j} a_{i} \otimes a_{j} \otimes b_{j} \otimes b_{i}=R^{23} R^{14}
\end{array}
$$

Prop 1.6. If (H, R) is quasitriangular, then we have

$$
\begin{array}{ll}
\text { (1.2) } & R^{12} R^{13} R^{23}=R^{23} R^{B} R^{12} \tag{1.2}\\
\text { (1.3) } & (S \otimes i d) R=R^{-1}=\left(i d \otimes S^{-1}\right) R, \quad(S \otimes S) R=R \\
\text { (1.4) } & (\varepsilon \otimes i d) R=1_{H} \otimes 1_{n}=(i d \otimes \varepsilon) R . \\
& (\varepsilon \otimes i d)\left(\sum_{i} a_{i} \otimes b_{i}\right)=\sum_{i} \varepsilon\left(a_{i}\right) \otimes b_{i}=\sum_{i} 1_{H} \otimes \varepsilon\left(a_{i}\right) b_{i}=1_{H} \otimes \sum_{H} \varepsilon \varepsilon\left(a_{i}\right) b_{i} \\
& =1_{H}
\end{array}
$$

PF. First, by definition, we have

$$
\begin{aligned}
& R^{\prime \otimes} R^{13} R^{23}=R^{12} \cdot(\Delta \otimes i d)(R)=\sum_{i} R \cdot \Delta\left(a_{i}\right) \otimes b_{i} \\
& =\sum_{i} \tau \Delta\left(a_{i}\right) \cdot R \otimes b_{i}=(\tau \otimes i d)(\Delta \otimes i d)(R) \cdot R^{\prime 2}
\end{aligned}
$$

$$
\begin{aligned}
& =(\tau \otimes i d)\left(R^{13} R^{23}\right) \cdot R^{12}=R^{23} R^{13} R^{12} \\
& \sum_{i} a_{i} \otimes \mid \otimes b_{i} \quad, \quad a_{j} \otimes b_{j} \\
& \begin{array}{|c}
X \\
1 \otimes a_{i} \otimes b_{i} \\
a_{j} \otimes 1 \otimes b_{j}
\end{array} \\
& R^{23} \quad R^{3} \quad \sum \varepsilon\left(a_{i, 1}\right) \otimes a_{i, 2} \otimes b_{i}=\sum_{H} \otimes a_{i} \otimes b_{i}
\end{aligned}
$$

To prove (1.4), note that $l_{H} \otimes R=(\varepsilon \otimes i d \otimes i d)(\Delta \otimes i d) R$

$$
=(\varepsilon \otimes i d \otimes i d)\left(R^{13} R^{23}\right)=\sum_{i, j} \varepsilon\left(a_{i}\right) \otimes a_{j} \otimes b_{i} b_{j}
$$

$=\left(1_{H} \otimes(\varepsilon \otimes i d) R\right)\left(I_{n} \otimes R\right)$, can calling $\theta_{H} R$ from both sides,
we have $\left.\right|_{H} \otimes I_{n} \otimes I_{H}=I_{H} \otimes(\varepsilon \otimes i d) R$. Applying μ on both sides, we
have $\left.\left.\right|_{n} \otimes\right|_{H}=(\varepsilon \otimes i d) R$. The other equality can be similarly proved.

Finally, we have

$$
\begin{gathered}
R \cdot(S \otimes i d)(R)=\sum_{i, j} a_{i} S\left(a_{j}\right) \otimes b_{i} b_{j} \\
=(\mu \otimes i d)(i d \otimes S \otimes i d)\left(R^{3} R^{23}\right)=(\mu \otimes i d)(i d \otimes S \otimes i d)(\Delta \otimes i d)(R) \\
=(\varepsilon \otimes i d)(R)=1_{H} \otimes I_{H} \Rightarrow(S \otimes i d)(R)=R^{-1}
\end{gathered}
$$

Now consider $H^{\text {cop }}$ w/ coproduct $\Delta^{\text {cop }}=\tau \Delta$ and antipode $S^{\text {cop }}=S^{-1}$.
Since τ is an algebra homomaptiiem on $H \otimes H$,

$$
\tau(R) \Delta^{c o p}(h)=\tau(R \cdot \Delta(h))=\tau(\tau \Delta(h) \cdot R)=\Delta(h) \cdot \tau(R) .
$$

for all $h \in H . \wedge\left(H^{\operatorname{cop}}, \tau(R)\right)$ is $Q T$. Therefore, by the above, Mocover, it is easy to check that
we have $\left(S^{\text {cop } \otimes i d ~}\right)(\tau(R))=\left(S^{-1} \otimes i d\right)(\tau(R))=\tau(R)^{-1}$.
applying τ, we have $\left(\right.$ id $\left.\otimes S^{-1}\right)(R)=R^{-1}$. Finally,

$$
\begin{aligned}
(S \otimes S)(R) & =(i d \otimes S)(S \otimes i d)(R)\left(=(i d \otimes S)\left(R^{-1}\right)\right) \\
& =(i d \otimes S)\left(i d \otimes S^{-1}\right)(R)=R .
\end{aligned}
$$

