Lecture 12

Last time : Character theory of fin. dim'l s.s. Hopf algebras.

$$R(H) = Span_{k} \{ \chi_{j} \} \subseteq H^{*} \qquad \chi_{i} * \chi_{j} = \sum_{l} N_{i,j} \chi_{l}$$

$$Z_{\geq 0}$$

Class equation:
$$k = \overline{lk}$$
, char $(lk) = 0$. If $\{e_0, \dots, e_m\}$ is a complete set
of princitive or thogonal idempotents in $R(H)$, $w/e_0 \in \int_{H^*}$, then for
each $0 \in i \in m$, dim $(e_i \mid H^*)$ divides dim (H) , and
dim $(H) = 1 + \sum_{i=1}^{m} \dim (e_i \mid H^*)$

Key ingredient: to show
$$d = \frac{\dim(H)}{\dim(e_i H^*)} \in \mathbb{Z}$$
, it suffices to show

$$d \in O(algebraic integer)$$
. Essentially this follows from $N_{i,j} \in \mathbb{Z}$

When
$$H = IRG$$
, then the theorem reduces to the usual class equation for
finite group. Indeed, we have
 $f \in R(H) \iff f(ghg^{-1}) = f(h)$, $\forall g.h \in G \iff f$ is a class function
Thus. $e_i = \sum_{g \in C_i} \delta_g$, where C_i is the *i*-th conjugacy class of G, and
 $g \in C_i$

dim
$$(e_i H^*) = |C_i|$$
, which divides $|G|$.

When $H = (IKG)^*$, $H \cong IK^{\bigoplus 161}$, and there are 161 linearly independent characters. In this case, $R(H) = H^* = IKG$, and the idempotents e_i in the class equation are just the princitive idempotents of IKG, and $e_i H^*$ are irreducible IKG - modules. Then the divisibility in the class equation in this case is Frobenius' classical theorem that the degree of an irreducible G - module divides 161.

<u>THM 5.6</u> (Zhu). Suppose *k* is an algebraically closed field of characteristic O, and *H* is a semisimple Hopf algebra of prime dimension *p*, then $H \cong k Z_p Z$. <u>PE</u>. By the class equation, $p = 1 + \sum_{i>0} p^{t_i}$. This forces $t_i = 0$ for all iso

i>0. Hence, there are p linearly independent characters of H, and $H \cong k^{\bigoplus p}$. So, H is commutative and semisimple so by THM 2.3.1, $H^* \cong k^{\mathbb{Z}}/p\mathbb{Z}$, and $H \cong k^{\mathbb{Z}}/p\mathbb{Z}$. Actually, 2hu proved H is s.s. if $p \ge 3$, and the case p = a is trivial. THM 5.6 holds for all dim (H) = p. $k = \overline{k}$, char (k) = 0.

In 1975, Kaplansky conjectured on analog of Frobenius' theorem for Hopf algebras, which remains open. That is,

Conj. (Kaplansky). Let H be a finite dim't semisingle Hopf algebra over an algebraically closed field of characteristic O. Thun, for any ineducible module V of H, we have dim (V) | dim (H). Chapter 3. Drinfeld double.

In this chapter, we consider arbitrary Hopf algebras over arbitrary fields, unless specified. "Commutativity"

§1. Quasitriangular Hopf algebra. D_{EE} . An almost cocommutative Hopf algebra is a pair (H, R), where H is a Hopf algebra with bijective antipode S, and R \in H \otimes H is an invertible element such that for all $h \in$ H,

$$T\Delta(h) = R \cdot \Delta(h) \cdot R^{-1}$$

where τ is the usual swap map.

In sigma notation, $\Sigma h_a \otimes h_1 = R (\Sigma h_a \otimes h_a) \cdot R^{-1}$.

 $\frac{\text{LEM 1.a}}{\text{Let }} \text{ Let } (H, R) \text{ be an almost cocommutative Hopf algebra, and let } V, W$ $be left H-modules. Then <math>V \otimes W \cong W \otimes V$ as left H-modules. $PE. \text{ Define } \varphi: V \otimes W \to W \otimes V \text{ by } v \otimes w \mapsto R^{-1}(w \otimes v). \text{ Then },$ $fn \text{ all } h \in H,$ $\varphi(h \cdot (v \otimes w)) = R^{-1} (\sum h_a \otimes h_b) \cdot (w \otimes v)$ $= (\sum h_b \otimes h_b) \cdot R^{-1}(w \otimes v) = h \cdot \varphi(v \otimes w).$ $W \otimes V = h \cdot \varphi(v \otimes w).$

Example. Any cocommutative Hopf algebra is abmost cocommutative $w/R = 1_H \otimes 1_H$. However, such an H can also be almost cocommutative w/R a nontrivial R. On the other hand, if $H = (IRG)^*$ for some finite

Non abelian group G, and take g, $h \in G$ s.t. $gh \neq hg$. Then by the definition of the coproduct of H, we have, for $V = lk \delta g$, $W = lk \delta h$. that $\delta gh \cdot (V \otimes W) \neq 0$, but $\delta gh \cdot (W \otimes V) = 0$. So $V \otimes W \not\equiv W \otimes V$ $(\int_{X} = \sum_{g \in X} \delta_g \otimes \delta_z$ $g_{g \in X}$ $g_{g \in X}$

as H-nudules. Hence, H can not be almost co commutative.

Recall from Prop 1.5.9, if H is cocommutative. then Sa = id.

<u>Prop 1.4</u> Let (H, R) be almost cocommutative. Then S^{σ} is inner. More precisely, write $R = \sum_{i} a_{i} \otimes b_{i}$ and $u = \sum_{i} (Sb_{i}) a_{i} \in H$. Then,

 $u \in H^{\times}$, and for all $h \in H$, we have $S^{2}(h) = u h u^{-1} = (Su)^{-1} h (Su)$. Consequently, $u(Su) \in \mathbb{Z}(H)$. $\widehat{}^{\text{center of } H}$.

PE. We first show that for any
$$h \in H$$
,
(*) $uh = S^{2}(h) u$.
By definition. $(R \otimes 1_{H}) (\Sigma_{1} h_{1} \otimes h_{2} \otimes h_{3}) = (\Sigma_{1} h_{2} \otimes h_{1} \otimes h_{3})(R \otimes 1_{H})$,
and this can be rewritten as
 $\sum_{i} a_{i}h_{i} \otimes b_{i}h_{2} \otimes h_{3} = \Sigma_{1} h_{2}a_{i} \otimes h_{1}b_{i} \otimes h_{3}$
 $\sum_{i} a_{i}h_{i} \otimes b_{i}h_{2} \otimes h_{3} = \sum_{i} h_{2}a_{i} \otimes h_{i}b_{i} \otimes h_{3}$
 $\sum_{i} \sum_{i} A_{i}h_{(2)} \otimes \cdots \qquad \int_{u}^{verm.} S^{2} \otimes S \otimes id_{u}$
Thus, $\sum_{i} S^{2}(h_{3}) \cdot S(b_{i}h_{2}) \cdot a_{i}h_{1} = \sum_{i} S^{2}(h_{3}) \cdot S(h_{i}b_{i}) \cdot h_{2}a_{i}$

$$LHS = \sum_{i} S(b_{i} h_{2} S(h_{3})) \cdot a_{i} h_{i} = \sum_{i} S(b_{i}) a_{i} h = u h$$

$$RHS = \sum_{i} S^{2}(h_{3}) S(b_{i}) S(h_{i}) h_{2} a_{i} = S^{2}(h) u$$

and this proves (*).

Next, we show that
$$\alpha \in H^{\times}$$
. Write $R^{-1} = \sum_{j} C_{j} \otimes d_{j}$ and set

$$v = \sum_{j} S^{-1}(dj) C_{j}, \text{ then, by } (x), \text{ we have}$$

$$uv = \sum_{j} u \cdot S^{-1}(dj) C_{j} = \sum_{j} S(dj) u C_{j} = \sum_{i,j} S(b_{i}d_{j}) a_{i}C_{j}$$

$$= \mathcal{M} \tau (id \otimes S) (RR^{-1}) = 1_{H}$$

$$\sum_{i,j} a_{i}c_{j} \otimes b_{i}d_{j} = 1_{H} \otimes 1_{H}.$$

Thus, by (*), $S^{a}(v) u = 1H$, so $u \in H^{\times}$, and $S^{a}(h) = u h u^{-1}$. Applying S on both sides. we have $S^{2}(Sh) = (Su)^{-1}(Sh) \cdot Su$, so by the bijectivity of S, $S^{a}(h) = (Su)^{-1}h \cdot Su$. Now $S^{-2}(h) = u^{-1}hu$ $= (Su)h (Su)^{-1}$, so $u(Su) \in Z(H)$.

Det An almost cocommutative Hopf algebra
$$(H, R)$$
 is quasitriangular
(RT) if $R = \sum_{i=1}^{n} a_i \otimes b_i$ satisfies the following conditions:
 $(1.1) \quad (\Delta \otimes id)R^{i} = R^{13}R^{a3}$, and $(id \otimes \Delta)R = R^{13}R^{12}$,
where $R^{12} = \sum_{i=1}^{n} a_i \otimes b_i \otimes I_H$, $R^{a3} = \sum_{i=1}^{n} I_H \otimes a_i \otimes b_i$, and

 $R'' = \sum_{i} a_i \otimes I_H \otimes b_i$. In this case, R is called a universal R-matrix

of H. A QT Hopf algebra is triangular if
$$R^{-1} = \tau(R)$$
.

of H. A QT Hopf algebra is triangular if
$$R^{-1} = \tau(R)$$
.
In general, for any QT Hopf algebra (H, R) w/ $R = \sum_{i=1}^{n} a_i \otimes b_i$, and
for any $n \ge a$ (given by the context), R^{ik} is understood as an
 n -fold tensor, and j. k indicates the positions of a; and b:
what components 1_H except for the j and k-th position,
 $n=a$, $R^{a_1} = \sum_i b_i \otimes a_i$,
 $n=4$, $R^{i4} \cdot R^{23} = \sum_{i=j}^{n} a_i \otimes a_j \otimes b_j \otimes b_i = R^{23} R^{14}$.

$$n=\partial$$
, $R^{a_i} = \sum b_i \otimes a_i$

$$n = 4$$
, $R^{14} \cdot R^{23} = \sum_{i,j} a_i \otimes a_j \otimes b_j \otimes b_i = R^{23} R^{14}$

<u>PROP 1.6</u> If (H, R) is quasitinangular, then we have

$$(1.2) \qquad R^{12} R^{13} R^{23} = R^{23} R^{13} R^{12}$$

$$(1.3) \qquad (S \otimes id) R = R^{-1} = (id \otimes S^{-1}) R, \qquad (S \otimes S) R = R$$

$$(1.4) \qquad (E \otimes id) R = 1_{H} \otimes 1_{H} = (id \otimes E) R,$$

$$(E \otimes id) (\sum_{i} a_{i} \otimes b_{i}) = \sum_{i} E(a_{i}) \otimes b_{i} = \sum_{i} 1_{H} \otimes E(a_{i})b_{i} = 1_{H} \otimes \sum_{i} E(a_{i})b_{i}$$

$$PE. \quad First. \quad Ly \ definition, \quad we \quad have$$

$$R^{1a} R^{13} R^{a3} = R^{1a} \cdot (\Delta \otimes id)(R) = \sum_{i} R \cdot \Delta(a_{i}) \otimes b_{i}$$

$$= \sum_{i} \tau \Delta(a_i) \cdot R \otimes b_i = (\tau \otimes id) (\Delta \otimes id) (R) \cdot R^{12}$$

$$= (I \otimes id) (R^{13} R^{23}) \cdot R^{12} = R^{23} R^{14} R^{12}$$

$$\sum_{i=1}^{N} a_i \otimes b_i = I \otimes a_j \otimes b_j$$

$$R^{23} = R^{4} = \sum_{i=1}^{N} (a_{i,i}) \otimes a_{i,i} \otimes b_i = \sum_{i=1}^{N} (a_{i,i}) \otimes a_i \otimes b_i \otimes b_i = \sum_{i=1}^{N} (a_{i,i}) \otimes a_i \otimes b_i \otimes b_i \otimes b_i = \sum_{i=1}^{N} (a_{i,i}) \otimes a_i \otimes b_i \otimes b_i \otimes b_i \otimes b_i \otimes a_i \otimes b_i \otimes b_i$$

for all heH. A (H^{cop}, t(R)) is QT. Therefore, by the above, Moreover, it is easy to check that we have $(S^{LOP} \otimes id)(\tau(R)) = (S^{-1} \otimes id)(\tau(R)) = \tau(R)^{-1}$. applying τ , we have $(id \otimes S^{-1})(R) = R^{-1}$. Finally,

$$(S \otimes S)(R) = (id \otimes S)(S \otimes id)(R)(= (id \otimes S)(R^{-1}))$$
$$= (id \otimes S)(id \otimes S^{-1})(R) = R$$