Lecture 13
Last time : $Q T$ Hops algebra. (H, R)

$$
\begin{gathered}
R \in H \otimes H \text { invertible } \\
\left.\begin{array}{c}
\text { (QT 1) } \\
\begin{array}{c}
R T 2)
\end{array} \quad \tau \Delta(h)=R \cdot \Delta(h) \cdot R^{-1}, \quad \forall h \in H
\end{array}\right\} \text { Almost cocommutative } \\
\begin{array}{c}
(Q T 3) \quad(\Delta \otimes i d) R=R^{13} R^{23}, \quad(i d \otimes \Delta) R=R^{13} R^{12} \\
R=\sum_{i} a_{i} \otimes b_{i}, \quad R^{j k}=\sum 1_{H} \otimes \cdots \otimes 1_{H} \otimes a_{i} \otimes 1_{H} \otimes \cdots \otimes b_{i} \otimes 1_{H} \cdots \\
1
\end{array} \\
\\
\end{gathered}
$$

LEM I. ' ${ }^{\prime}$ If (H, R) is almost cocommutative, then $V \otimes W \cong W \otimes V$ for all left H-modules V and W.
sketch. Check $\varphi: V \otimes W \rightarrow W \otimes V$ is an H-module isom.

$$
v \otimes w \mapsto \tau(R \cdot(v \otimes w))
$$

PROP 1.6. If (H, R) is $Q T$, then
($Q Y B E)$

$$
\begin{aligned}
& R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12} \\
& \text { (Said) } R=R^{-1}=\left(\text { id } \otimes S^{-1}\right) R . \quad(S \otimes S) R=R \\
& \text { identify } \gamma \in \mathbb{k} \text { wow } \\
& \eta(\gamma)=\gamma \cdot 1_{n} \in H . \\
& (\varepsilon \otimes i d) R=1_{H}=(i d \otimes \varepsilon) R \quad\left((\varepsilon \otimes i d) R=\sum_{i} \varepsilon\left(a_{i}\right) b_{i} \quad \text { if } R=\sum_{i} a_{i} \otimes b_{i}\right) \\
& " \varepsilon\left(a_{i}\right) \otimes b_{i} \rightarrow \varepsilon\left(a_{i}\right) I_{H} \otimes b_{i}{ }_{\|} \\
& \text {ع(ai) } b_{i}
\end{aligned}
$$

QYBE: Quantum Yang-Baxter equation.
The quantum universal enveloping algebras $U_{q}(g)$ were introduced to study matrix solutions to $Q Y B E$.

Note that, R acts on $H \otimes H$ by left multiplication L_{R}. Write

$$
B^{i j}:=\tau^{i j} \circ L_{R^{i j}} \in A_{u t}\left(H^{\otimes 3}\right)
$$

$\tau^{i j}$: interchanges tenor factors in the obvious way.
In general, given $n \in \mathbb{Z}_{\geqslant 2}$, the automorphism ${ }^{\circ n} H^{\otimes n}$ induced by some $\sigma \in S_{n}$
(in cycle from) is denoted by τ^{σ}. For example, $\tau^{12} \tau^{23} \tau^{12}=\tau^{13}$
Then, for any $1, t, u \in H$, QYBE implies

$$
\begin{aligned}
& B^{12} B^{23} B^{12}(\Delta \otimes t \otimes u)=B^{12} B^{23}\left(\tau^{12}\left(R^{12}\right) \cdot \tau^{12}(\Delta \otimes t \otimes u)\right) \\
= & \tau^{12}\left(R^{12}\right) \cdot \tau^{12} \tau^{23}\left(R^{23}\right) \cdot \tau^{12} \tau^{23} \tau^{12}\left(R^{12}\right) \cdot \tau^{12} \tau^{23} \tau^{12}(s \otimes t \otimes u) \\
= & \tau^{13}\left(R^{23} R^{13} R^{12}\right) \cdot \tau^{13}(\Delta \otimes t \otimes u) \\
= & \tau^{13}\left(R^{12} R^{13} R^{23}\right) \cdot \tau^{13}(s \otimes t \otimes u)=B^{23} B^{12} B^{23}(\Delta \otimes t \otimes u) .
\end{aligned}
$$

Let $\beta=\tau \cdot L_{R} \in \operatorname{Aut}(H \otimes H)$, then the above implies (Braid relation) $(\beta \otimes i d)(i d \otimes \beta)(\beta \otimes i d)=(i d \otimes \beta)(\beta \otimes i d)(i d \otimes \beta)$

In general, for any vector space V over \mathbb{k}, a linear automorphism $\beta \in \operatorname{Aut}(V \otimes V)$ satisfying the braid elation in Hut $\left(V^{0^{3}}\right)$ is called an R-matrix for V. Finding R-matrices for arbitrary vector spaces can be computationally challenging. as the braid relation is a system of degree 3 homogeneous equations in "huge number of variables. However, if a vector space has ${ }^{\text {and }}$ additional structure of an H-module for some $Q T$ Hoff algeha (H, R), then it automatically has an R-matrix afforded by R.

Indeed, for any left H-module V, define $\beta_{V, V}: V \otimes V \rightarrow V \otimes V$

$$
v \otimes v^{\prime} \mapsto \tau\left(R \cdot\left(v \otimes v^{\prime}\right)\right)
$$

then the above implies that $\beta_{V, V}$ is an R-matrix for V. Moreover, LEM 1. α^{\prime} implies that $\beta_{v, V} \in A_{u} t_{H}(V \otimes V)$.

Another special property of QT Hops algebra is given as follows.

THM 1.7 Let (H, R) be QT. Write $R=\sum_{i} a_{i} \otimes b_{i}$, and $u=\sum_{i}\left(S b_{i}\right) a_{i}$.
Then for all $h \in H, \quad S^{4}(h)=y h y^{-1}$, where $y=u\left(S_{u}\right)^{-1} \in \underbrace{G(H)}$. part of statement.

PF. The equation involving S^{4} follows immediately from PROP 1.4

so it remains to show $y \in G(H)$, and it suffices to show $\Delta(y)=y \otimes y$. (as $\varepsilon(y)=\varepsilon\left(u\left(S_{u}\right)^{-1}\right)=1$. by dy and Prop 1.4)

Firstly, we show that

$$
(* *) \quad \Delta(u)=\left(R^{\alpha \prime} R\right)^{-1}(u \otimes u)=(u \otimes u)\left(R^{21} R\right)^{-1}
$$

By def, for any $h \in H$.

$$
\begin{aligned}
& R^{a 1} R(\Delta(h))=\tau(R) \cdot \tau \Delta(h) \cdot R=\tau(R \cdot \Delta(h)) R=\tau(\tau \Delta(h) \cdot R) R \\
= & \Delta(h) \cdot R^{21} R
\end{aligned}
$$

so it suffices to show $\Delta(u) R^{21} R=u \otimes u$. Again by def.

$$
\Delta(u)=\sum_{i} \Delta\left(s b_{i}\right) \cdot \Delta\left(a_{i}\right)=\sum_{i}(s \otimes s)\left(\tau \Delta\left(b_{i}\right)\right) \cdot \Delta\left(a_{i}\right)
$$

so $\quad \Delta(u) R^{21} R=\sum_{i}(S \otimes S)\left(\tau \Delta\left(b_{i}\right)\right) \cdot R^{21} R \cdot \Delta\left(a_{i}\right)$

Now we make H^{02} into a right $H^{\otimes 4}$ - module by defining
$(h \otimes k) \diamond(c \otimes d \otimes e \otimes f):=\left(S_{e}\right) h c \otimes(S f) k d$. (check it's indeed an action)

$$
\sum_{i}(\delta \otimes s)\left(b_{i, k)} \otimes b_{i,(1)}\right)\left(a_{i,(1)} \otimes a_{i, k)}\right)
$$

Then $\quad \Delta^{\uparrow}(u) R^{\alpha 1} R=\sum S\left(b_{i,(a)}\right) b_{k} a_{j} a_{i, 1} \otimes S\left(b_{i,(1)}\right) a_{k} b_{j} a_{i,(k)}$ $\sum_{k} b_{k} \otimes a_{k}$

Recall by $(Q T 3)$, $($ id $\otimes \tau \Delta) R=(i d \otimes \tau)\left(R^{\prime 3} R^{12}\right)=R^{12} R^{13}$, and so

$$
\begin{aligned}
& (\Delta \otimes \tau \Delta) R=(i d \otimes i d \otimes \tau \Delta)(\Delta \otimes i d) R \\
& \left.=(\text { lid } \otimes \text { id } \otimes \tau \Delta)\left(R^{13}\right) \text {. (id } \otimes \text { id } \otimes \tau \Delta\right)\left(R^{23}\right) \\
& =\tau^{12}\left(\tau^{12}\left(\sum_{i} a_{i} \otimes I_{n} \otimes \tau \Delta\left(b_{i}\right)\right)\right) \cdot(i d \otimes i d \otimes \tau \Delta)\left(R^{23}\right) \\
& =\tau^{1 \alpha}\left(\sum_{i} 1_{H} \otimes a_{i} \otimes \tau \Delta\left(b_{i}\right)\right) \cdot(\text { id } \otimes i d \otimes \tau \Delta)\left(R^{23}\right) \\
& =\tau^{12}\left(1_{H} \otimes(i d \otimes \tau \Delta)(R)\right) \cdot(i d \otimes i d \otimes \tau \Delta)\left(R^{23}\right) \\
& =\underbrace{\tau^{12}\left(I_{H} \otimes\left(R^{12} R^{13}\right)\right)} \cdot \underbrace{(i d \otimes i d \otimes \tau \Delta)\left(R^{\alpha 3}\right)} \\
& =R^{13} R^{14} R^{23} R^{24} \\
& =R^{13} R^{23} R^{14} R^{24}
\end{aligned}
$$

So by QYBE, $R^{12} \cdot(\Delta \otimes \tau \Delta) R=R^{23} R^{3} R^{12} R^{14} R^{24}$. Also. by PRoP1.6

$$
\begin{aligned}
R^{-1}= & \left(i d \otimes S^{-1}\right) R=\sum a_{i} \otimes S^{-1} b_{i} \text {. so } \\
& {\underset{\sim}{R}}_{R^{21}}^{H^{21}} \diamond{\underset{\sim}{H}}_{R^{23}}=\sum_{1}\left(b_{i} \otimes a_{i}\right) \diamond\left(I_{H} \otimes a_{j} \otimes b_{j} \otimes 1_{H}\right) \\
= & \sum S\left(b_{j}\right) b_{i} \otimes a_{i} a_{j}=(S \otimes i d)\left[\left(\sum_{i}^{-1} b_{i} \otimes a_{i}\right) \cdot\left(\sum b_{j} \otimes a_{j}\right)\right] \\
= & (S \otimes i d)\left[\tau\left(R^{-1}\right) \cdot \tau(R)\right]=(\text { Said })\left(1_{H} \otimes 1_{H}\right)=1_{H} \otimes I_{H}
\end{aligned}
$$

So $\quad R^{21} \Delta\left(R^{23} R^{13}\right)=\left(I_{H} \otimes I_{H}\right) \Delta R^{13}=u \otimes I_{H}$. Thus.

$$
\begin{aligned}
& R^{21} \Delta\left(R^{23} R^{33} R^{12} R^{14}\right)=\left(u \otimes I_{H}\right) \Delta\left(R^{12} R^{14}\right)=\sum u a_{i} a_{j} \otimes S\left(b_{j}\right) b_{i} \\
& =\left(u \otimes I_{H}\right) \cdot \underbrace{\sum a_{i} a_{j} \otimes S\left(b_{j}\right) b_{i}=u \otimes I_{H}}_{=I_{H} \otimes I_{H}}
\end{aligned}
$$

Finally, $\quad\left(u \otimes I_{11}\right) \diamond R^{24}=u \otimes u$, proving $(* *)$.
Now we have

$$
\begin{array}{ll}
\Delta\left(S_{u}\right)=(S \otimes S)(\tau \Delta(u))=(S \otimes S)\left[\tau\left(R^{\alpha 1} R\right)^{-1} \cdot(u \otimes u)\right] \quad \text { by }(* *) . \\
=(S \otimes S)(u \otimes u) \cdot(S \otimes S)\left(R R^{21}\right)^{-1}=\left(S_{u} \otimes S_{u}\right) \cdot\left(R^{21} R\right)^{-1} \quad \text { by } P_{\text {Lop } 1.6} .
\end{array}
$$

Therefore, $\quad \Delta(y)=\Delta(u) \Delta(S u)^{-1}$

$$
\begin{align*}
& \left.=(u \otimes u)\left(R^{21} R\right)^{-1} \cdot\left(R^{21} R\right) \cdot\left(\delta_{u}\right)^{-1} \otimes(S u)^{-1}\right) \\
& =y \otimes y \tag{图}
\end{align*}
$$

the

Rank. If (H, R) is $Q T$ ur f $\operatorname{dim}(H)<\infty$, let $g \in H, \alpha \in H^{*}$ be distinguished group like elements, $y=x\left(S_{u}\right)^{-1}$ as above. If $\tilde{\alpha}:=(\alpha \otimes i d) R \in H$, then $g y=y g=\tilde{\alpha}$. The proof can be found in [Radford. On the antipode of QTHA].

DEE. If (H, R) and $\left(H^{\prime}, R^{\prime}\right)$ are $Q T$, then they are isomouphic as $Q T$ Hoof algebra if and only if there exists a Hoff algebra ion $f: H \rightarrow H^{\prime}$ sot. $R^{\prime}=(f \otimes f)(R)$. Two universal R-matrices R, R^{\prime} on H are equivalent if $(H, R) \cong\left(H, R^{\prime}\right)$ as QT Hoff algetras.

Example. For any cocommutative Hoff algebra $H,\left(H, I_{H} \otimes I_{H}\right)$ is a QT Hoff algebra. but H may have other universal R-matrices. For example, $H=\mathbb{K} \mathbb{Z} / 2 \mathbb{Z}$ and chan $(\mathbb{k}) \neq 2$, then a nontrivial R is given by

$$
R=\frac{1}{2}(e \otimes e+e \otimes g+g \otimes e-g \otimes g)
$$

where we wesite $\mathbb{Z} / \alpha \mathbb{Z}=\{e, g\}$ uultipliatively.

Example. Let $H=T_{4}(-1)$ and assume $\operatorname{char}(\mathbb{k})=2$. Then H has a one-parameter family of universal R-matrices: for $\theta \in \mathbb{k}$, define

$$
R_{\theta}:=\frac{1}{2}(1 \otimes 1+\log +g \otimes 1-g \otimes g)+\frac{\theta}{2}(x \otimes x-x \otimes g x+g x \otimes x+g x \otimes g x)
$$

Redford showed they are indeed universal R-matrices. and if $\theta \neq 0$, then $\left(H, R_{\theta}\right) \nsucceq\left(H, R_{0}\right)$.
"Example". Let $q \in \mathbb{C}^{x}$ be a nonzero complex umber that is not a root of minty. The Lie algetra e_{2} of 2×2-traceless matrices has a basis $\{e, f, h\}$ where

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad \text { and } \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

It is ear to see that $[e, f]=h, \quad[h, e]=2 e, \quad[h, f]=-2 f$.
Recall $U\left(s l_{2}\right)$ is a Hopf algeria wo

$$
\Delta(x)=x \otimes 1+1 \otimes x, \quad S(x)=-x, \quad \varepsilon(x)=0 \quad \text { for all } x \in \mathbb{A} l_{2} .
$$

The quantum enveloping algebra $U_{q}\left(s l_{a}\right)$ is defined as follows.
As an algebra. $U_{q}\left(s l_{a}\right)=\left\langle E, F, K, K^{-1}\right\rangle$ subject to the following relations

$$
K K^{-1}=K^{-1} K=1, \quad K E=q^{2} E K, \quad K F=q^{-2} F K, \quad E F-F E=\frac{K^{2}-K^{-\alpha}}{q^{2}-q^{-2}}
$$

A Hops algetic structure on $U_{q}\left(s l_{2}\right)$ is given by

$$
\begin{array}{lll}
\Delta(E)=E \otimes k^{-1}+k \otimes E, & S(E)=-q^{-2} E, & \varepsilon(E)=0 \\
\Delta(F)=F \otimes k^{-1}+k \otimes F, & S(F)=-q^{2} F, & \varepsilon(F)=0 \\
\Delta(k)=k \otimes K, & S(k)=k^{-1}, & \varepsilon(k)=1
\end{array}
$$

(For details, see standard teat books on quantum groups. e.g. Kassel)

To understand the relation between $U(s / 2)$ and $U_{q}\left(s l_{2}\right)$, one can work wo "topological algebras" over $\mathbb{C}[[\hbar]]$, the ring of power series in the variable \hbar. Then one can think of $q=\exp (\hbar)$ and $k=\exp (\hbar h)$. In general, ne can define $U_{g}(g)$ for complex simple Lie algetse of, and they are the motivating examples of QT Hoff algehas. However, they are not QT in the strict sense of our definition. One should again work w/ $\mathbb{C}[[\hbar]]$ and find a universal R-matrix in the "topological tensor product of the topological algebra $U_{q}(g)$ wot itself". Nevertheless, V fin. dim'l ep $P: U_{q}(g) \rightarrow$ End (V), then $R_{p}:=(\rho \otimes \rho) R \in M_{n}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$ is a matrix solution to $Q Y B E$.

