Lecture 14
Last time: $Q T$ Hops algebra, QY BE
\$ 2. Coquasitriangular Hops algebras
DEF. A coquasitriangular (CQT) Hoof algetra is a pair (H, r), where H is a Hope algetza and $r \in(H \otimes H)^{*}$ is a bilinear form on H, satisfying the following conditions:

- (CQT 1) r is invertible in $(H \otimes H)^{*}$.
 multiplication, $\mu: H \otimes H \rightarrow H$

$$
\text { ((QT 3) } r \circ(\mu \otimes i d)=r^{13} * r^{\alpha 3}, \quad r_{0}(i d \otimes \mu)=r^{13} * r^{12}
$$

where $r^{1 d}=r \otimes \varepsilon, \quad r^{23}=\varepsilon \otimes r$, and $r^{13}=(\varepsilon \otimes r)(\tau \otimes$ id $)$.
The pair is called almost commutative if it only satisfies $(C Q T 1)$ and $(C Q T \alpha)$.
"when H is fin-diw' l,

$$
\begin{aligned}
& r=\sum \varphi_{i} \otimes \psi_{i} \in H^{*} \otimes H^{*} \\
& r^{13}=\sum_{1} \varphi_{i} \otimes 1_{\mu^{*}} \otimes \psi_{i} \\
& r^{\prime 3}(a \otimes b \otimes c) \\
& =\sum \varphi_{i}(a) \varepsilon(b) \psi_{i}(c) \\
& =\sum_{1} \varepsilon(b) \varphi_{i}(a) \psi_{i}(c) \quad . \\
& =(\varepsilon \otimes r)(b \otimes a \otimes c)
\end{aligned}
$$

Write above in terms of H.
Let $a, b, c, d \in H$ be arbitrary elements, then $r^{13}(a \otimes b \otimes c)=\varepsilon(b) r(a \otimes c)$ $(C Q T 1)$ says there exists $r^{\prime} \in(H \otimes H)^{*}$ s.t.

$$
\begin{aligned}
& \left(\gamma * r^{\prime}\right)(a \otimes b)=\sum r\left(a_{1} \otimes b_{1}\right) \cdot r^{\prime}\left(a_{2} \otimes b_{2}\right)=\sum r^{\prime}\left(a_{1} \otimes b_{1}\right) \gamma\left(a_{2} \otimes b_{2}\right) \\
& =\left(r^{\prime} * r\right)(a \otimes b)=\varepsilon(a) \varepsilon(b) .
\end{aligned}
$$

$(C Q T 2)$ requires $\quad \sum_{1} r\left(a_{1} \otimes b_{1}\right) \cdot a_{2} b_{2}=\sum r\left(a_{2} \otimes b_{2}\right) b_{1} a_{1}$

$$
(r * \mu)(a \otimes b) \quad(\mu \tau * r)
$$

$(C \otimes T 3)$ says $(t \circ(\mu \otimes i d))(a \otimes b \otimes c)=\left(r^{13} k r^{23}\right)(a \otimes b \otimes C)$

$$
r\left(a b b^{\prime \prime} \otimes c\right) \quad \sum_{r} r\left(a \otimes c_{1}^{\prime \prime}\right) r\left(b \otimes c_{2}\right)
$$

Note: the notation here is different from Montgomery's book.

Let (H, r) be $C Q T$. If H is finite-dim'l, then $(H \otimes H)^{*}=H^{*} \otimes H^{*}$ as Hope algeciras. In this case, (CQT 1) and (CQT d) imply that $\left(H^{*}, r\right)$ is almost cocommutative. In fact, $(C Q T \alpha)$ is equivalent to

$$
\begin{aligned}
& r * \Delta^{*}(f)=r \Delta^{*}(f) * r \quad f_{r} \text { all } f \in H^{*} . \\
& \left(r * \Delta^{*}(f)\right)(a \otimes b)=\sum_{1} r\left(a_{1} \otimes b_{1}\right) \Delta^{*}(f)\left(a_{2} \otimes b_{2}\right)=\sum r\left(a_{1} \otimes b_{1}\right) f\left(a_{2} b_{2}\right) \\
& =\cdots=\left(r \Delta^{*}(f) * r\right)(a \otimes b) .
\end{aligned}
$$

Moreover, (CQT 3) is exactly (Q T3) for H^{*}.

PRop 2.2. Let H be a finite-diw'l Hops algesia. Then a pair (H, r) is $C Q T$ if and only if $\left(H^{*}, r\right)$ is $Q T$.

Example. Let H be any commutative Hops algebra, then $(H, \varepsilon \otimes \varepsilon)$ is $C Q T$.

Example. Let $H=\mathbb{k} G$ be a group algebra, then H admits a $C Q T$ structure $r \in(H \otimes H)^{*}$ if and only if for all $g, h, k \in G$,

$$
\begin{array}{ll}
\cdot & r(g \otimes h) \in \mathbb{k}^{x} \\
\cdot & g h=h g \\
\cdot & r(g h \otimes k)=r(g \otimes k) r(h \otimes k), \quad r(g \otimes h k)=r(g \otimes h) r(g \otimes k) .
\end{array}
$$

Therefor in this case, (H, r) is CQT if and only if the following conditions
 homomoplnisus from G to $\hat{G}:=\operatorname{Hom}\left(G, \mathbb{R}^{*}\right)$.

Now suppose G is a finite abelian group of order n, and suppose \mathbb{H} contains a primitive n-th root of unity. Then $G \cong \hat{G}$ and $(\mathbb{R} G)^{*}=\mathbb{k} \hat{G}$.
in one-too one By PRop 2.2. the QT structures on $\mathbb{R} G$ are corepoposene the bicharacters on \hat{G}.

For example, consider $G=\mathbb{Z} / 2 Z=\{e, g\}$ written multipliatively. Write $\hat{G}=\{\varepsilon, \gamma\}$, where ε is the trivial character, and $\gamma(g)=-1$. Then there is only one nontrivial bicharacter z on \hat{G}, namely, $z(\gamma, \gamma)=-1$, and all other z-values are 1. Suppose R_{z} is the QT structure on $\mathbb{K} G$ corresponding to z, and write

$$
R_{z}=\alpha_{1}(e \otimes e)+\alpha_{2}(e \otimes g)+\alpha_{3}(g \otimes e)+\alpha_{4}(g \otimes g) \in \mathbb{k} G \otimes \mathbb{K} G .
$$

By the above discussions, we have

$$
\begin{aligned}
& (\varepsilon \otimes \varepsilon)\left(R_{z}\right)=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=z(\varepsilon, \varepsilon)=1 \\
& (\varepsilon \otimes \gamma)\left(R_{z}\right)=\alpha_{1}-\alpha_{2}+\alpha_{3}-\alpha_{4}=z(\varepsilon, \gamma)=1
\end{aligned}
$$

$$
\begin{aligned}
& (\gamma \otimes \varepsilon)\left(R_{z}\right)=\alpha_{1}+\alpha_{2}-\alpha_{3}-\alpha_{4}=z(\gamma, \varepsilon)=1 \\
& (\gamma \otimes \gamma)\left(R_{z}\right)=\alpha_{1}-\alpha_{2}-\alpha_{3}+\alpha_{4}=z(\gamma, \gamma)=-1
\end{aligned}
$$

system of
The above ${ }^{r}$ linear equations has a unique solution, ie., $\alpha_{1}=\alpha_{2}=\alpha_{3}=\frac{1}{2}$, $\alpha_{4}=-\frac{1}{2}$, and R_{z} is exactly the R in the previous section.

LEM 2.5 Let (H, r) be an almost commutative Hoff algetra, and let V, W be left H-comodules. Then $V \otimes W \cong W \otimes V$ as left comodules.
P_{E}. Define $\beta_{v, w}: V \otimes W \rightarrow W \otimes V$ by $v \otimes w \mapsto \sum r(\underbrace{w_{-1}}_{\in H} \otimes v_{-1}) \underset{\epsilon W}{w_{0} \otimes v_{\epsilon V}} \underset{\sim}{v_{0}}$

Since r is invertible. $\beta_{v, w}$ is a linear isom. It remains to show that it is an H-comodule map. Let P be the coaction of H.

$$
\begin{aligned}
& \left(\rho_{W \otimes V} \circ \beta_{V, w}\right)(v \otimes w)=P_{W \otimes V}\left(\sum r\left(w_{-1} \otimes v_{-1}\right) w_{0} \otimes v_{0}\right) \\
& =\sum_{1} r\left(w_{-2} \otimes v_{-2}\right) \underbrace{w_{-1}}_{\in H} v_{-1} \otimes \underbrace{}_{w} \otimes \underbrace{}_{0} v_{0} \\
& =(C Q T 2)=\left(\left(i d \otimes \beta_{V, w}\right) \circ P_{V \otimes w}\right)(v \otimes w)
\end{aligned}
$$

Set $V=W$ in the above lemma, then we can show that $\beta_{V, V}$ is an R-matrix for V. In fact, it is clear that one can define a CQT bialgeba in the same way as we did for Hort algebras. Then LEM 2.5 holds abs for

CQT bialgetras, i.e., a CQT bialgetra gives rise to an R-matrix on every comodule.

The famous FRT construction, due to Faddee, Reshetikhin and Takhtadfian, says that the converse is true. Namely, if any $\operatorname{lin} / \lim _{k}$-vector space V admits an R-matrix $\beta \in \operatorname{Aut}(V \otimes V)$, then \exists a CQT bialgetia $\left(A_{\beta}, r\right)$ st. V is a left A_{β} - comodule, and $\beta \in A u t_{A_{\beta}}(V \otimes V)$, and
$\beta=\beta_{V, V}$ defined in LEM 2.5. The construction is briefly described as follows.

Let $\left\{v_{i} \mid 1 \leq i \leq N\right\}$ be a basis for V, and write the matrix presentation of β writ. $\left\{v_{i} \otimes v_{j} \mid 1 \leq i, j \leq N\right\}$ for $V \otimes V$ by

$$
\beta\left(v_{i} \otimes v_{j}\right)=\sum_{k, l} b_{i j}^{k l} v_{k} \otimes v_{l}
$$

Consider the free algebra $F_{\beta}=\mathbb{k}\left\langle X_{s}^{t} \mid 1 \leq s, t \leq N\right\rangle$ generated by a family of indetermines X_{s}^{t}, and let I_{β} be the two-sided ideal of F_{β} generated by all elements of the form

$$
\left(\sum_{1 \leq k, l \leq N} b_{i j}^{k l} x_{k}^{\Delta} x_{l}^{t}\right)-\left(\sum_{1 \leq m, n \leq N} x_{i}^{m} x_{j}^{n} b_{m n}^{\Delta t}\right)
$$

where i, j, s, t rum over the index set $\{1, \cdots, N\}$. Then the quotient
$A_{\beta}:=F_{\beta} I_{\beta}$ has an (essentially unique) $C Q T$ algeta structure determined by $\Delta\left(X_{s}{ }^{t}\right)=\sum_{i=1}^{N} X_{s}^{i} \otimes X_{i}^{t}, \quad \varepsilon\left(X_{s}^{t}\right)=\delta_{s, t}$. and $r \in\left(A_{\beta} \otimes A_{\beta}\right)^{*}$ is determined $\gamma\left(x_{i}^{k} \otimes x_{j}^{l}\right)=b_{j i}^{k l}$.

For example, suppose $\mathbb{k}=\mathbb{C}$, and $\operatorname{dim}(V)=2$ wt basis $\left\{v_{1}, v_{2}\right\}$. It is cary to check, w/r.t. $\left\{v_{1} \otimes v_{1}, v_{1} \otimes v_{2}, v_{2} \otimes v_{1}, v_{2} \otimes v_{2}\right\}$, the matrix

$$
\beta=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & q-q^{-1} & 0 \\
0 & 0 & 0 & q
\end{array}\right), \text { where } q \in \mathbb{C}^{x} \text { is not a root of }
$$

is an R-matrix for V. Denote $x_{1}^{1}:=a, \quad x_{2}^{\prime}:=b, \quad x_{1}^{2}:=c, x_{2}^{2}:=d$. then the algebra $A \beta$ is generated by a, b, c, d, subject to the relation

$$
\beta \cdot\left(\begin{array}{cccc}
a^{2} & a b & b a & b^{2} \\
a c & a d & b c & b d \\
c a & c b & d a & d b \\
c^{2} & c d & d c & d^{2}
\end{array}\right)=\left(\begin{array}{cccc}
a^{2} & a b & b a & b^{2} \\
a c & a d & b c & b d \\
c a & c b & d a & d b \\
c^{2} & c d & d c & d^{2}
\end{array}\right) \cdot \beta
$$

It is ears to see that

$$
A_{\beta}=\mathbb{C}\langle a, b, c, d \mid \quad b a=q a b, c a=q a c, c b=b c, d b=q b d, \quad d a-a d=(q-q-1) b c\rangle
$$

w/ the bialgebra structure defined above. As a bialgetra, this is called the coordinate ring of quantum 2×2-matrices, and is denoted by $O_{q}\left(M_{2}(\mathbb{C})\right)$
in Mont. book. (compare wt $O\left(M_{2}(\mathbb{C})\right)$ in our Section 1.4)
One can introduce a notion of q-determinant so as to define $O_{q}\left(S L_{2}(\mathbb{C})\right)$ and $O_{q}\left(G L_{2}(\mathbb{C})\right.$). In fact, it can be shown (e.g. Kassel's book) $O_{q}\left(S L_{d}(C)\right)$ is "dual" to $U_{q}\left(1 l_{2}\right)$ in an appropriate sense.
§3. Drinfeld double.
DEF. Let H be any Hoff algeha wi bijective antipode S wi inverse \bar{S}, and let $h \in H, f \in H^{*}$ be arbitrary elements. The left coadjoint action of H on H^{*} is given by

$$
h \rightharpoonup f:=\sum h_{1} \rightharpoonup f \leftharpoonup \bar{s}\left(h_{2}\right)
$$

The right coadjoint action of H on H^{*} is given by

$$
f<h:=\sum \bar{S}\left(h_{1}\right) \rightharpoonup f<h_{2} .
$$

Rok. The coadjoint actions are related to the obvious adjoint actions of H on itself. $\forall h, k \in H, \quad a^{l}(h)(k):=\sum_{1} h_{1} k s\left(h_{2}\right) \quad$ and $\quad a^{k}(h)(k)=\sum_{1} s\left(h_{1}\right) k h_{2}$,
then it is cary to check

$$
\begin{aligned}
& \langle h \rightarrow f, k\rangle=\left\langle f, \quad \operatorname{ad}^{2}(\bar{S}(h))(k)\right\rangle \quad \text { and } \\
& \langle f<h, k\rangle=\left\langle f, \quad \operatorname{ad}^{k}(\bar{S}(h))(k)\right\rangle
\end{aligned}
$$

For example, if $H=\mathbb{R} G$ for a finite group G, then $H^{*}=(\mathbb{k} G)^{*}$. In this case, for any $x, y, z \in G,\left(y-\delta_{x}\right)(z)=\delta_{x, z y}=\delta_{x y-1}(z)$ so $y-\delta_{x}=\delta_{x y^{-1}}$. Similarly, $\delta_{x}<y=\delta_{y^{-1} x}$. Hence,

$$
y \rightarrow \delta_{x}=y \rightarrow \delta_{x}<y^{-1}=\delta_{y x y}
$$

When H is fivite-dim' l, the coadjoint actions make $H^{*, \operatorname{cop}}$ into a left H-module coalgetre, and H into a right $H^{*, ~ c o p}-$ module algesia. That is,

$$
\begin{aligned}
& \Delta^{*}{ }^{\text {cop }}(h \rightharpoonup f)=\sum_{1}\left(h_{1} \rightharpoonup f_{2}\right) \otimes\left(h_{2} \rightharpoonup f_{1}\right) \\
& \Delta^{*}(f)=\sum f_{1} \otimes f_{2}, \Delta^{*} \operatorname{cop}(f)=\sum f_{2} \otimes f_{1}, \Delta^{*}(f)(x \otimes y)=f(x y) \\
& \Delta^{*, \text { cop }}(f)(x \otimes y)=f(y x)
\end{aligned}
$$

and

$$
\begin{aligned}
& \Delta(h<f)=\sum\left(h_{1}<f_{2}\right) \otimes\left(h_{2} \leftharpoonup f_{1}\right) . \\
& \Delta^{* \operatorname{cop}}(h \rightarrow f)(x \otimes y)=(h \rightharpoonup f)(y x) \\
& =\sum_{1}\left\langle h_{1}-f\left\langle\bar{s}\left(h_{2}\right), y x\right\rangle\right. \\
& =\sum f, \bar{s}\left(h_{2}\right) y x h_{1}> \\
& \left(\sum_{1}\left(h_{1} \rightarrow f_{2}\right) \otimes\left(h_{2} \rightarrow f_{1}\right)\right)(x \otimes y) \\
& =\sum_{1}\left\langle\left(h_{1}\right)_{1}\right\rangle f_{2}\left\langle\bar{s}\left(\left(h_{1}\right)_{2}\right), x\right\rangle\left\langle\left(h_{2}\right)_{1} \rightharpoonup f_{1}\left\langle\bar{s}\left(h_{2}\right)_{2}\right), y\right\rangle \\
& =\sum\left\langle f_{2}, \bar{s}\left(h_{2}\right) x h_{1}\right\rangle\left\langle f_{1}, \bar{s}\left(h_{4}\right) \text { y } h_{3}\right\rangle \\
& =\sum_{1}\left\langle f, \quad \bar{s}\left(h_{4}\right) \text { y } h_{3} \bar{s}\left(h_{2}\right) x h_{1}\right\rangle=\sum_{1}\left\langle f, \bar{s}\left(h_{2}\right) \text { y } x h_{1}\right\rangle . \\
& \bar{s}\left(h_{3}\right) y \underbrace{\varepsilon\left(h_{2}\right)} x h_{1} \\
& \bar{s}\left(h_{n}\right) y \times h \text {, }
\end{aligned}
$$

