Lecture 15
Last time : $\quad h>f=\sum h_{1} \rightharpoonup f<\bar{s}\left(h_{2}\right), \quad \bar{s}=s^{-1} \quad H \curvearrowright H^{*}$

$$
f<h=\Sigma \bar{S}\left(h_{1}\right) \rightharpoonup f<h_{2} \quad H^{*} \cap H
$$

$H^{*, c o p}$ (when $\left.\lim (H)<\infty\right)$ has coproduct $\Delta^{*, u p}(f)=\sum f_{\alpha} \otimes f_{1}$

$$
s^{*, o p}=\overline{s^{*}}
$$

THE 3.3 (Drinfeld) Let H be a finite-dimensional Hops algetre. There exists a unique Hops algebra structure on the vector space

$$
D(H):=H^{*, \text { cop }} \underset{\substack{\uparrow \\ \text { bootie }}}{\propto} H:=H^{*, \text { cop }} \otimes H
$$

such that for all $\varphi, \psi \in H^{*}$ and $a, b \in H$, the following conditions are satisfied.

- The multiplication on $D(H)$ satisfies

$$
(\varphi \bowtie a) \cdot(\psi \otimes b)=\sum_{\substack{1 \\ \text { milt in } H^{*}}}\left(a_{1} \rightharpoonup \psi_{2}\right) \bowtie\left(a_{2}<\psi_{1}\right)_{\uparrow} b
$$

$$
\text { mull. in } \mathrm{H} \text {. }
$$

- The unit on $D(H)$ is given by $1_{D(H)}=1_{H^{*}} N 1_{H}=\varepsilon \bowtie 1_{H}$
- As a coalgetra. $D(H)$ is the tensor product of $H^{* i a p}$ and H, that is,

$$
\Delta_{D(H)}(\varphi \otimes a)=\sum_{1}\left(\varphi_{2} \otimes a_{1}\right) \otimes\left(\varphi_{1} \otimes a_{2}\right) \quad \in D(H) \otimes D(H)
$$

and $\quad \varepsilon_{D(H)}=\varepsilon_{H} * \varepsilon_{H}=1_{H}$ © ε

- The antipode of $D(H)$ satisfies

$$
\begin{aligned}
& S_{D(H)}(\varphi \star a)=(\varepsilon \star S(a)) \cdot\left(\bar{S}^{*}(\varphi) \star \mathbb{1}_{H}\right) \\
= & \sum\left(S\left(a_{2}\right) \rightharpoonup \bar{S}^{*}\left(\varphi_{1}\right)\right) \star\left(S\left(a_{1}\right)<\bar{S}^{*}\left(\varphi_{2}\right)\right)
\end{aligned}
$$

Moreover, if $\left\{e_{i}\right\}$ is a basis for H, and $\left\{e^{i}\right\}$ is the corresponding dual basis for H^{*}, then $(D(H), R)$ is a quasi-triangalar Hope algebra, where $\quad R=\sum_{i}\left(\varepsilon \propto e_{i}\right) \otimes\left(e^{i} \otimes \mathbb{1}_{H}\right) \in D(H) \otimes D(H)$
whose inverse is $\bar{R}=\sum_{i}\left(\varepsilon \bowtie e_{i}\right) \otimes\left(S^{*}\left(e^{i}\right) \otimes I_{H}\right) \in D(H) \otimes D(H)$.

DEF. Let H be a finite-dim'l Hops algebra. The quantum double of H is the fuari-triangular Hoff algeton $D(H)$ described in THM 3.3.

Note. The proof of THM 3.3 involves massive calculations, which are omitted. Details can be found in Kassa's book, Majid (Physics for algebraists). Here. We illustrate a proof of $(\Delta \otimes i d)(R)=R^{13} R^{23}$ as an example. By def, we need to show

$$
\left(e^{i} N_{H}\right)\left(e_{B}^{j} \sum_{H}\right)
$$

$$
\sum\left(\varepsilon \star e_{i(1)}\right) \otimes\left(\varepsilon \otimes e_{i(2)}\right) \otimes\left(e^{i} \otimes 1_{H}\right)=\sum_{1}\left(\varepsilon \star e_{i}\right) \otimes\left(\varepsilon \otimes e_{j}\right) \otimes\left(e^{i} e^{j} \otimes 1_{H}\right)
$$

Evaluate both sides at $(a \propto r) \otimes(b \propto s) \otimes(c \wedge t) \in\left(H \otimes H^{*}\right)^{\otimes 3}$ On the one hand,

$$
\begin{aligned}
& \sum_{1}\langle L H S,(a \otimes r) \otimes(b \otimes s) \otimes(c \otimes t)\rangle \\
= & \sum \varepsilon(a) \varepsilon(b) t\left(1_{H}\right) r\left(e_{i(1)}\right) s\left(e_{i(a)}\right) e^{i}(c) \\
= & \sum \varepsilon(a) \varepsilon(b) t\left(1_{H}\right)\left\langle r \otimes s, e^{i}(c) e_{i(1)} \otimes e_{i(2)}\right\rangle
\end{aligned}
$$

Sine $c=\sum e^{i}(c) e_{i}$, so $\sum c_{(1)} \otimes c(2)=\Delta(c)=\sum_{i,(e i)} e^{i}(c) e_{i(1)} \otimes e_{i(2)}$

$$
=\varepsilon(a) \varepsilon(b) t\left(1_{H}\right) \gamma s(c)
$$

On the other hand,

$$
\begin{aligned}
& \sum\langle R H S,(a \wedge r) \otimes(b \otimes s) \otimes(C \otimes t)\rangle \\
= & \sum \varepsilon(a) \varepsilon(b) t\left(l_{H}\right) r\left(e_{i}\right) s\left(e_{j}\right) e^{i} e^{j}(c) \\
& \text { sine } \sum_{i} r\left(e_{i}\right) e^{i}=r, \sum_{j} s\left(e_{j}\right) e^{j}=s \\
= & \varepsilon(a) \varepsilon(b) t\left(I_{H}\right) r s(c)
\end{aligned}
$$

Monomer, $(\varphi \propto a)=\left(\varphi \propto \mathbb{1}_{H}\right) \cdot(\varepsilon \propto a) \quad$ (compare w/

$$
\left.=\sum \varphi\left(1_{H}>\varepsilon\right) \bowtie\left(1_{H}<\varepsilon\right) a \quad\left(\sum \otimes a\right) \cdot\left(\varphi \propto 1_{H}\right)!\right)
$$

This implies the unlliplication is completely determined by $\left(\varepsilon \otimes e_{i}\right) \cdot\left(e^{j} N I_{H}\right)$ where $\left\{e_{i}\right\},\left\{e^{i}\right\}$ are dual bases as before. Indeed,

$$
\begin{aligned}
& \left(e^{i} \propto e_{j}\right) \cdot\left(e^{k} \otimes e_{l}\right)=\left(e^{i} \otimes 1_{H}\right) \cdot(\underbrace{\left(\varepsilon \propto e_{l}\right)}_{\left.=\sum_{1} c_{k_{m}^{j n}}^{\varepsilon e_{j}}\right) \cdot\left(e^{k} \propto 1_{H}\right) \cdot\left(\varepsilon \propto e_{n}\right)} \\
& =\sum_{1} c_{k m}^{j n}\left(e^{i} \propto 1_{1}\right)\left(e^{m} \otimes 1_{1}\right)\left(\varepsilon \otimes e_{n}\right)\left(\varepsilon \otimes e_{l}\right) \\
& =\sum_{1} c_{k m}^{j n}\left(e^{i} e^{m} \bowtie e_{n} e_{l}\right) \text {. }
\end{aligned}
$$

Consequently, the universal R-matrix R defined is THM 3.3 is independent of the choice of dual basis. Indeed, R is the image of $\Sigma_{i} e_{i} \otimes e^{i} \in H \otimes H^{*}$ under the tensor product of the embeddings $H \subset D(H), H^{*} \rightarrow D(H)$.

Con 3.5. Let H be a finite-dimennional Hops algebra. Then H is a Hops subalgeben of a QT Hops algetce, and a Hops algebra quotient of a CQT Hops algebra.
PF. $H \hookrightarrow D(H)$ as Hoff subalgetren. $H^{*} \hookrightarrow D\left(H^{*}\right)$, so $\left(D\left(H^{*}\right)\right)^{*} \rightarrow\left(H^{*}\right)^{\frac{1}{2}} H$ is surjective. But $D\left(H^{*}\right)^{*}$ is $C Q T$.

Example. Let $H=\mathbb{R} G$ for G a finite group wo r the canonical dual basis G for H and $\left\{\delta_{g} \mid g \in \in\right\}$ for H^{*}. Note that for $H^{+, \text {cop }}$, we have $\Delta^{* \text { cop }}\left(\delta_{g}\right)=\sum_{x y=g} \delta_{y} \otimes \delta_{x}, \quad \varepsilon_{H^{*}}\left(\delta_{g}\right)=\delta_{g, e}$, and $\quad \bar{S}^{*}\left(\delta_{g}\right)=\delta_{g-1}$.

As a vector space, $D(H)=\operatorname{span}_{k}\left\{\delta_{g} \otimes h \mid g, h \in G\right\}$, and the multiplication is determined by $(\varepsilon \wedge g) \cdot\left(\delta_{h} \infty e\right)=\delta_{g h g-1} \propto g$
Verification is left as an exercise (what is $g<\delta_{z}$?)

We have the following simple observation.
LEM 3.7. Suppose $\operatorname{dim}(H)<\infty$. Then for any $\varphi \in H^{*}, h \in H$,

$$
\begin{aligned}
& h \leftrightarrow \varphi=\sum\left\langle\varphi_{3} \cdot \overline{s^{7}}\left(\varphi_{1}\right), h\right\rangle \varphi_{2} \\
& h<\varphi=\sum\left\langle\varphi, \bar{s}\left(h_{3}\right) \cdot h_{1}\right\rangle h_{2}
\end{aligned}
$$

PF. We prove the second equality. $\forall \psi \in H^{*}$,

$$
\begin{aligned}
& \left\langle\psi, h\langle\varphi\rangle=\Sigma\left\langle\psi, \bar{s}^{*}\left(\varphi_{1}\right)-h\left\langle\varphi_{2}\right\rangle\right.\right. \\
& =\Sigma\left\langle\varphi_{2}, h_{1}\right\rangle\left\langle\psi, h_{2}\right\rangle\left\langle\bar{s}^{*}\left(\varphi_{1}\right), h_{3}\right\rangle=\Sigma\left\langle\varphi_{1}, \bar{s}\left(h_{3}\right)\right\rangle\left\langle\varphi_{2}, h_{1}\right\rangle\left\langle\psi, h_{2}\right\rangle \\
& =\Sigma\left\langle\varphi, \bar{s}\left(h_{3}\right) \cdot h_{1}\right\rangle\left\langle\psi, h_{2}\right\rangle=\left\langle\psi, \sum\left\langle\varphi, \bar{s}\left(h_{3}\right) h_{1}\right\rangle h_{2}\right\rangle
\end{aligned}
$$

LEM 3.8. Suppose $\operatorname{dim}(H)<\infty$. Then for all $\varphi, \psi \in H^{*}$ and $h, k \in H$,

$$
\begin{aligned}
& (\varphi \otimes h)(\psi 凶 k)=\sum \varphi\left(h_{1} \rightharpoonup \psi<\bar{S}\left(h_{3}\right)\right) 凶 h_{2} k \\
& (\varphi \bowtie h)(\psi \propto k)=\sum \varphi \psi_{2} \otimes\left(\bar{S}^{*}\left(\psi_{1}\right) \rightharpoonup h<\psi_{3}\right) k .
\end{aligned}
$$

PF. $(\varphi \otimes h)(\psi \otimes k)=\sum \varphi\left(h_{1}>\psi_{(2)}\right) \propto\left(h_{2}<\psi_{0}\right) k$

$$
\begin{aligned}
& =\sum \varphi\left(h_{1} \rightharpoonup \psi_{2}\right) \bowtie\left\langle\psi_{1}, \bar{S}\left(\left(h_{2}\right)_{3}\right) \cdot\left(h_{2}\right)_{1}\right\rangle\left(h_{2}\right)_{2} k \\
& \left.=\sum \varphi\left(h_{1} \rightarrow \psi_{2}\right) \otimes \leqslant \psi_{1}, \bar{s}\left(h_{4}\right) \cdot h_{2}\right\rangle h_{3} k \\
& \Delta^{a p}(x)=\Sigma x_{(y)}\left(\Delta x_{(1)}\right. \\
& =\sum_{1} \varphi\left(h_{1} \rightarrow\left\langle\psi_{1}, \bar{s}\left(h_{4}\right) \cdot h_{2}\right\rangle \psi_{2}\right) \otimes h_{3} k \\
& \text { ox (cop,2) }
\end{aligned}
$$

Recall $\forall f \in H^{*}, a, b \in H, \quad\left\langle f\langle a, b\rangle=\langle f, a b\rangle=\sum_{2}\left\langle f_{1}, a\right\rangle\left\langle f_{2}, b\right\rangle\right.$

$$
=\left\langle\Sigma_{1}\left\langle f_{1}, a\right\rangle f_{2}, b\right\rangle
$$

$$
\begin{aligned}
& =\sum_{1} \varphi\left(h_{1} \rightharpoonup\left(\psi<\left(\bar{s}\left(h_{4}\right) \cdot h_{2}\right)\right) \star h_{3} k\right. \\
& =\sum \varphi\left(\left(h_{1}\right)_{1} \rightharpoonup\left(\psi<\bar{S}\left(h_{4}\right) h_{2}\right) \leftharpoonup \bar{S}\left(\left(h_{1}\right)_{2}\right)\right) \bowtie h_{3} k
\end{aligned}
$$

$$
\begin{align*}
& =\sum \varphi\left(h_{1} \rightharpoonup \psi<\bar{S}\left(h_{3}\right)\right) \otimes h_{2} k . \tag{0}
\end{align*}
$$

Therefore. by $R_{M K}$ above, the multiplication in $D(H)$ is actually determined by

$$
(\varepsilon \bowtie h)\left(\varphi \propto 1_{H}\right)=\sum_{1}\left(h_{1} \rightharpoonup \varphi<\bar{s}\left(h_{3}\right)\right) \bowtie h_{2}
$$

THM 3.9 (Radfod) Suppose $\operatorname{dim}(H)<\infty$. Choose $0 \neq \Lambda \in \int_{H}^{k}$ and $0 \neq \lambda \in \int_{H^{*}}^{L}$, then $\lambda \bowtie \Lambda$ is a left and right integral for $D(H)$. In particular, $D(H)$ is unimodula.

Sketch. Let $g \in H$ be the distinguished group like element. Recall by Prop 2.4.7, $\left\{\bar{S}\left(\Lambda_{2}\right), \Lambda_{1}\right\}$ and $\left\{S\left(\Lambda_{1}\right) g^{-1}, \Lambda_{2}\right\}$ are both dual bases $w / r . t$. the same bilinem form, then
(*) $\sum \bar{s}\left(\Lambda_{2}\right) \otimes \Lambda_{1}=\sum s\left(\Lambda_{1}\right) g^{-1} \otimes \Lambda_{2}$
Consequently, we have $\sum \Lambda_{1} \otimes \Lambda_{2}=\sum \Lambda_{2} \otimes g S^{2}\left(\Lambda_{1}\right)$. and so

$$
\begin{aligned}
& \sum_{1} \bar{s}\left(\Lambda_{3}\right) g \Lambda_{1} \otimes \Lambda_{2}=\sum S\left(\Lambda_{1}\right) \Lambda_{2} \otimes \Lambda_{3} \\
& =I_{n} \otimes \Lambda
\end{aligned}
$$

By Lem 3.8.

$$
\begin{aligned}
& (\lambda \otimes \Lambda) \cdot(\varphi \star h)=\sum \lambda\left(\Lambda_{1}+\varphi<\bar{s}\left(\Lambda_{3}\right)\right) \otimes \Lambda_{2} h \\
& \left.=\sum_{1} \lambda\left\langle\Lambda_{1}-\varphi<\bar{S}\left(\Lambda_{3}\right), g\right\rangle \star \Lambda_{2} h \quad \text { (by def of } \int_{\Lambda^{*}}^{l} \text { and } g\right) \\
& =\sum_{1}^{\prime} \lambda\left\langle\varphi, \bar{S}\left(\Lambda_{3}\right) g \Lambda_{1}\right\rangle \star \Lambda_{2} h . \\
& =\sum_{1} \lambda\left\langle\varphi, 1_{H}\right\rangle A \Lambda h=\underbrace{\varphi\left(1_{H}\right) \cdot \varepsilon(h)} \cdot(\lambda * \Lambda)=\varepsilon_{D(H)}\left(\varphi_{\infty} h\right) \cdot(\lambda N \Lambda) \text {. } \\
& \Rightarrow \lambda \star \wedge \in \int_{D(H)}^{k} \text {. }
\end{aligned}
$$

To show $\lambda \propto \wedge \in \int_{D(H)}^{L}$, use $S\left(\int_{H}^{L}\right)=\int_{H}^{R}$ to derive the left integral version of (*), i.e., $\sum \Lambda_{2}^{L} \otimes \Lambda_{1}^{L}=\sum_{1} \Lambda_{1}^{L} \otimes S^{2}\left(\Lambda_{2}^{L}\right) g^{-1}$. for $0 \neq \Lambda^{L} \in \int_{H}^{L}$.

Note: The g in our course is the inverse of that in Redford '94.

Cor. Suppose $\operatorname{dim}(H)<\infty$. TFAE.

- $D(H)$ is semisimple.
H and H^{*} are sis.
- H and H^{*} are co-s.s.
- $D(H)$ is coss.

Moreover, if $\operatorname{chan}(\mathbb{k})=0$, then $T F A E$

- $D(H)$ is s.s. $\cdot H$ is sss. $\cdot H^{*}$ is sss. $\cdot S^{2}=i d$.
- $D(H)$ is co-s.s H is coss. H^{*} is co-s.s.
§4. Yetter-Drinfeld modules.
let
Goal: describe ${ }^{r} D(H)$-modules in terms of H.
Given any left $D(H)$-module V wot action θ, it is automatically a left H-module

$$
h \bullet v:=(\varepsilon \star h) \diamond v
$$

and a left H^{*}-module \leadsto gives $^{2} H$-comodule structure.

$$
\varphi \square v:=\left(\varphi \otimes \mathcal{1}_{H}\right) \diamond v .
$$

They are compatible in the following sense:

$$
\begin{aligned}
& h \cdot(\varphi \square v)=\left[(\varepsilon \star h) \cdot\left(\varphi \star 1_{H}\right)\right] \diamond v \\
= & \left(\Gamma\left(h_{1} \rightarrow \varphi<\bar{s}\left(h_{3}\right)\right) \star h_{2}\right) \diamond v=\sum\left(h_{1}-\varphi<\bar{s}\left(h_{3}\right)\right) \square\left(h_{2} \cdot v\right)
\end{aligned}
$$

Point: $D(H)$-mod $V \leftrightarrow \quad \begin{aligned} & V=H \text {-mod } \\ &=H \text {-comud +compatibility" }\end{aligned}$

