Lecture 2.

Notes: BIMSA course webpage. (After each lecture).

Last time: algebra
($A, \mu, \mu_{i n} \eta$)
coalgetra $(C, \Delta i n)$
$\mathbb{k} G, \quad U(g)$
2. The sigma notation

Let C be a coalgetra. $\forall c \in C$, we write

$$
\Delta(c)=\sum_{i} \underbrace{(\lambda)}_{(c)} c_{(1)}^{*} \otimes c_{(\alpha)}^{\infty}
$$

symbolic, not indicate particular elements of C "place holder"
Example. Recall $\tau: C \otimes C \rightarrow C \otimes C$ swap tensor components.

$$
\begin{aligned}
\tau(\Delta(c))= & \sum_{(c)} c_{(2)} \otimes c_{(1)} \quad \text { in sigma notation. } \\
C \text { is cocommutative } \Leftrightarrow & \sum_{(c)} c_{(1)} \otimes c_{(2)}=\sum_{(c)} c_{(2)} \otimes c_{(1)}, \forall c \in C . \\
& \begin{array}{r}
\text { sometimes omit }(c), \\
\\
\\
\\
\\
\\
\\
\text { omit " " } \Sigma^{\prime \prime}: \Sigma_{1}: c_{1} \otimes c_{2}
\end{array}
\end{aligned}
$$

Powerful when performing multiple Δ.

$$
(i d \otimes \Delta) \Delta(c)=(i d \otimes \Delta)\left(\sum_{(c)} c_{(1)} \otimes c_{(2)}\right)
$$

$$
\begin{aligned}
& \left.=\sum_{(c)} c_{(1)} \otimes \sum_{\left(c_{(2)}\right)}\left(c_{(2)}\right)\right)_{(1)} \otimes\left(c_{(2)}\right)_{(2)} \\
& =\sum_{(c)} c_{(1)} \otimes\left(c^{\left.c_{(\alpha)}\right)(1)} \otimes\left(c_{(2)}\right)(2)\right.
\end{aligned}
$$

lexical order:

$$
(1) \leftarrow(2)(1) \leftarrow(2)(2)
$$

\leftarrow co associative.
$=(\Delta \otimes i d) \Delta(c)=(\Delta \otimes i d)\left(\sum_{(c)} c_{(1)} \otimes c_{(\alpha)}\right)$
$=\sum_{(c)}\left(c_{(1)}\right)_{(1)} \otimes\left(c_{(1)}\right)_{(2)} \otimes c_{(2)}$
lexical order:
$(1)(1) \leftarrow(1)(2) \leftarrow(2)$
coassociativity \Rightarrow in sigma notation, only lexical order matters. \Rightarrow when writing multiple Δ in sigma notation. reorder in lexical order.
\rightarrow Sweedler notation

$$
\left\{\begin{array}{l}
7(i d \otimes \Delta) \Delta(c)=(\Delta \otimes i d) \Delta(c)=\sum_{(c)} \\
\text { Exercises in Sweedler's book. } \\
\Delta \Delta^{[2]}(c):=\sum_{(c)} c_{(1)} \otimes c(a) \otimes c_{(3)}
\end{array}\right.
$$

Inductively define $\Delta^{[n-1]}(c):=\left(\Delta \otimes i d_{c \otimes(n-2)}\right) \Delta^{[n-2]}(c)$

$$
=\sum_{(c)} c_{(1)} \otimes c_{(2)} \otimes \cdots \otimes c_{(n)}
$$

Recall
$\gamma_{\text {count axiom : }}(\varepsilon \otimes i d) \Delta(c)=c \quad$ (identify $1 \otimes c$ with c)
\Downarrow sigma notation

$$
(\varepsilon \otimes i d)\left(\sum_{(c)} c_{(1)} \otimes c_{(2)}\right)=\sum_{(c)} \varepsilon\left(c_{(1)}\right)^{\infty} c_{(2)}=c
$$

The other commit axiom : $\Sigma C_{(1)} \varepsilon\left(c_{(2)}\right)=c . \quad \forall c \in C$

Example. $\quad \sum_{(0)} c_{(1)} \otimes \underbrace{\varepsilon\left(c_{(3)}\right)}_{\epsilon \| \mathbb{k}} \otimes c_{(a)}$

$$
\begin{aligned}
& =\sum_{(c)} c_{(1)} \otimes \underbrace{\varepsilon\left(c_{(3)}\right) c_{(2)}}_{(\mathbb{k}}\left(=(\text { id } \otimes(\text { id } \otimes \varepsilon) \Delta) \sum_{(c)} c_{(1)} \otimes c_{(2)}\right) \\
& =\sum_{(c)} c_{(1)} \otimes c_{(\alpha)} \\
& =\Delta(c)
\end{aligned}
$$

3. Duals (I)

For vector space V, let $V^{*}:=\operatorname{Hom}_{\mathbb{k}}(V, \mathbb{R})$. Evaluation gives rise to a bilinear form

$$
\langle, \cdot\rangle=V^{*} \otimes V \rightarrow \mathbb{k}
$$

$\langle f, w\rangle:=f(w)$ use them interchangeably.
If $\varphi: V \rightarrow W$ is \mathbb{R}-linear, its transpose is defined to be

$$
\begin{gathered}
\varphi^{*}: W^{*} \rightarrow V^{*} \\
\langle\underbrace{\varphi^{*}(f)}_{\in V^{*}},{\underset{\sim}{c}}_{v}^{v}\rangle:=\langle{\underset{\sim}{2}}^{f}, \underbrace{\varphi} \underbrace{\varphi}(v)\rangle
\end{gathered}, \forall v \in V, f \in W^{*} .
$$

Note that for any vector space $V, V^{*} \otimes V^{*} \subseteq(V \otimes V)^{*}$.

LEM 3.1 If (C, Δ, ε) is a coalgebia, then
$\left.C C^{*}, \mu:=\left.\Delta^{*}\right|_{C^{*} \otimes C^{*}}, \eta:=\varepsilon^{*}\right)$ is an algetra.

$$
\Delta: C \rightarrow C \otimes c, \Delta^{*}:(c \otimes c)^{*} \rightarrow c^{*}
$$

PE. $\forall c \in C, f, g, h \in C^{*}$,

$$
\begin{align*}
& \langle\mu(\mu \otimes i d)(f \otimes g \otimes h), c\rangle \\
= & \langle(\mu \otimes i d)(f \otimes g \otimes h), \underbrace{}_{(c)}\rangle \\
= & \left.\sum_{(c)}\left\langle\mu\left(f(\mu), c_{(1)}\right\rangle \cdot\left\langle h, c_{(2)}\right\rangle \quad \begin{array}{l}
\text { alternatively, } \\
= \\
\text { use coassociativity and done }
\end{array}\right)(\Delta \otimes i d) \Delta(c)\right\rangle \\
= & \sum_{(c)}\left\langle f, c_{(1)}\right\rangle\left\langle g, c_{(2)}\right\rangle\left\langle h, c_{(3)}\right\rangle \\
= & \sum_{(c)}\langle f, c(1)\rangle\left\langle\mu(g \otimes h), c_{(2)}\right\rangle=\sum_{(c)}\left\langle(i d \otimes \mu)(f \otimes g \otimes h), c_{(1)} \otimes c_{(2)}\right\rangle \\
= & \sum_{(c)}\langle\mu(i d \otimes \mu)(f \otimes g \otimes h), c\rangle \\
& \langle\mu(\eta \otimes i d)(f), c\rangle=\langle(\eta \otimes i d)(f), \Delta(c)\rangle=\langle f,\langle(\otimes i d) \Delta(c)\rangle \tag{图}\\
= & \langle f, c\rangle=\cdots=\langle\mu(i d \otimes \eta)(f), c\rangle .
\end{align*}
$$

Same notation as above,
RMK. If C is cocomm, then C^{*} is comm.

$$
\begin{aligned}
& \langle\mu(f \otimes g), c\rangle=\sum_{(c)}\left\langle f, c_{(1)}\right\rangle\left\langle g, c_{(a)}\right\rangle=\sum_{(c)}\left\langle f, c_{(2)}\right\rangle\left\langle g, c_{(1)}\right\rangle \\
= & \langle\mu(g \otimes f), c\rangle .
\end{aligned}
$$

$$
(A, \mu, \eta)
$$

If we start wi an algebra, when A is not finite-dimensional, then $\mu^{*}: A^{*} \rightarrow(A \otimes A)^{*}$ may not lie in $A^{*} \otimes A^{*}$. A proper notion of finiteness is needed.

DEE. If A is an algebra, then the finite dual of A is defined to be $A^{0}:=\{f \in A^{*} \mid f(I)=0$ for some pho -sided) $_{\text {ideal }}^{I \subseteq A} \underbrace{\text { of }}_{\Uparrow}$ finite codim $\}$.

$$
\operatorname{dim}(A / I)<\infty
$$

Prop 3.3 If (A, μ, η) is an algebra, then $\mu^{*}\left(A^{\circ}\right) \subseteq A^{0} \otimes A^{0}$, and $\left(A^{0}, \mu^{*}, \eta^{*}\right)$ is a coalgebra.

Notation : $\forall a \in A, f \in A^{*}$, define $a \rightarrow f \in A^{*}$ and $f<a \in A^{*}$ by

$$
\begin{aligned}
& \langle a-f, b\rangle:=\langle f, b a\rangle \\
& \langle f\langle a, b\rangle:=\langle f, a b\rangle
\end{aligned}
$$

- For any vector spaces $W \subseteq V$, define $W^{\perp}:=\left\{f \in V^{*} \mid\langle f, W\rangle=0\right\}$. $\forall X \subseteq V^{*}$, define $X^{\perp}:=\{v \in V \mid\langle X, v\rangle=0\}$ B_{1} def, $\left(W^{\perp}\right)^{\perp}=W$, and $W^{\perp} \cong(V / W)^{*}$. The codimension of $W \subseteq V$ is $\operatorname{dim}(V / W)$.
(The following are equivalent)
LEM 3.4 Let (A, μ, η) be an algebra. TFAE.
(1) f vanishes on a right ideal of A of finite codimension.
(d) f vanishes on a left ideal of A of finite codim.
(3) f vanishes on an ideal of A of finite codim, i.e., $f \in A^{\circ}$.
(4) $\operatorname{dim}(A \rightharpoonup f)<\infty$
(5) $\operatorname{dim}(f<A)<\infty$
(6) $\operatorname{dim}(A>f<A)<\infty$
(7) $\mu^{*}(f) \in A^{*} \otimes A^{*}$

Plan.

Sketch.
$(1) \Rightarrow(4)$. Suppose $f(R)=0$ for some right ideal $R \subseteq A$ w/ $\operatorname{dim}(A / R)<\infty$. Then $\langle a \rightharpoonup f, R\rangle=\langle f, R a\rangle=\langle f, R\rangle=0 \quad \forall a \in A$. $\Rightarrow \quad A \rightharpoonup f \subseteq R^{\perp} \cong(A / R)^{*}$ finite dim' ℓ.
(4) \Rightarrow (1) Suppose $\operatorname{dim}(A \rightarrow f)<\infty$, then $R:=(A-f)^{\perp}$ is a right ideal of A. (To show $\forall r \in R, \forall a, x \in A, \Rightarrow r x \in R$, we need to show $\langle a \rightharpoonup f, r x\rangle=0$. But this is clear: $\langle a \rightarrow f, r x\rangle=\langle x a \rightarrow f, r\rangle$ $=0$). Moreover, $\langle f, R\rangle=\left\langle 1_{A} \vec{\rightharpoonup} f, R\right\rangle=0$. Finally, $(A>f)^{*}$ $\cong\left(R^{+}\right)^{*} \cong A / R$ is finite dim'l.
Similarly, $\quad(2) \Leftrightarrow(5), \quad(3) \Leftrightarrow(6)$.
Clearly, (3) $\Rightarrow(1)$ and (3) $\Rightarrow(\alpha)$.
$(\alpha) \Rightarrow(3)$. Suppose $f(L)=0$ for some left ideal $L \subseteq A$ of fin. codim. Then A / L is a fin dimensional A-module, i.e., \exists algebra homomorphism $\varphi: A \rightarrow \operatorname{End}_{\mathbb{k}}(A / L)$. Let $I=\operatorname{ker}(\varphi)$, then I is a two-sided ideal of finite codim. Moreover, $I \subseteq L$, so $f(I)=0$. Similarly, (1) $\Rightarrow(3) . \quad(1)$ to (6) are all equiv.) (4) \Rightarrow (7). Assume $\quad n:=\operatorname{dim}(A \rightarrow f)<\infty$. Choose a basis
$\left\{g_{1}, \cdots, g_{n}\right\}$ for $A-f$. Then $\forall a \in A, \quad a \rightharpoonup f=\sum_{j=1}^{n} h_{j}(a) g_{j}$
for some $h_{1}, \cdots, h_{n} \in A^{*}$. Hence, for any $a, b \in A$,

$$
\begin{aligned}
& \left\langle\mu^{*}(f), b \otimes a\right\rangle=\langle f, b a\rangle=\langle a \rightharpoonup f, b\rangle \\
= & \sum_{j=1}^{n}\left\langle h_{j}, a\right\rangle\left\langle g_{j}, b\right\rangle=\left\langle\sum_{j=1}^{n} g_{j} \otimes h_{j}, b \otimes a\right\rangle
\end{aligned}
$$

So $\quad \mu^{*}(f)=\sum_{j=1}^{n} g_{j} \otimes h_{j} \in A^{*} \otimes A^{*}$.
$(7) \Rightarrow(4)$. If $\mu^{*}(f)=\sum_{j=1}^{n} g_{j} \otimes h_{j} \in A^{*} \otimes A^{*}$ for some $g_{j}, h_{j} \in A^{*}$.
then the computation above implies $A \rightarrow f \subseteq \operatorname{span}_{1 k}\left\{g_{1}, \cdots, g_{n}\right\}$.

Sketch PF of Prop 3.3. Let $f \in A^{\circ}$. By LEM 3.4, we can choose a basis $\left\{g_{1}, \cdots, g_{n}\right\}$ for $A \rightarrow f$. Since $g_{j} \in A \rightarrow f$ for each $1 \leqslant j \leqslant n$, so $A \rightarrow g_{j} \subseteq A \rightarrow(A \rightarrow f) \subseteq A \rightarrow f$ fin. $\operatorname{dim} l$.
$\Rightarrow g_{j} \in A^{\circ}$ by LEM 3.3.
Since $\left\{g_{1}, \cdots, g_{n}\right\}$ is linearly independent, $\exists a_{1}, \cdots, a_{n} \in A$ 1.t. $g_{i}\left(a_{j}\right)=\delta_{i, j}$. Then $\exists h_{1}, \cdots, h_{n} \in A^{*}$ s.t. $\forall b \in A, b>f=\sum_{i=1}^{n} h_{i}(b) \cdot g_{i}$ To show $h_{j} \in A^{0}, \forall 1 \leq j \leq n$, note that

$$
\begin{array}{r}
\langle f\left\langle a_{j}, b\right\rangle=\underbrace{\langle f}, \underbrace{}_{j} b\rangle=\left\langle\mu^{*}(f), a_{j} \otimes b\right\rangle \\
=\left\langle\sum_{i=1}^{n} g_{i} \otimes h_{i}, a_{j} \otimes b\right\rangle=\sum_{i=1}^{n}\langle\underbrace{g_{i}, a_{j}}_{\delta_{i, j}}\rangle\left\langle h_{i}, b\right\rangle=\left\langle h_{j}, b\right\rangle
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow h_{j}=f<a_{j} \in f \leftharpoonup A \Rightarrow h_{j} \subset A \subseteq f<A \text { fin. dim'l. } \\
& \Rightarrow B_{y} L E M 3.3, h_{j} \in A^{0} . \\
& \Rightarrow \mu^{*}(f)=\sum_{j=1}^{n} g_{j} \otimes h_{i} \in A^{0} \otimes A^{0} .
\end{aligned}
$$

The rest of the proof is routine. ("dualize product and mit diagrams").

