Lecture 3
Last time : sigma notation
$$\Delta$$

dual $A = algebra \Rightarrow A^{\circ} = coalgebra$
 $\delta = coalgebra$
No class on Oct 4.
Make up at cud of scuester.
S4. Bialgebra
For two algebras (A_j, A_j, γ_j) , $j = 1, a$, there is a natural algebra
structure on $A_1 \otimes A_2$:
 $\mu : (A_1 \otimes A_2) \otimes (A_1 \otimes A_3) \xrightarrow{id_1, \otimes c \otimes id_{A_2}} A_1 \otimes A_1 \otimes A_2 \otimes A_2$
 $\int \mu \otimes \mu_2$

$$A_{1} \oslash A_{2}$$

and $\gamma := \gamma, \otimes \gamma_a$. i.e., $(a_1 \otimes a_a) \cdot (b_1 \otimes b_a) = a_1 b_1 \otimes a_2 b_a$ $\forall a_j, b_j \in A_j, j = 1, 2.$ $I_{A_i} \otimes A_a = I_{A_i} \otimes I_{A_a}$

Similarly, the tensor product of two coalgebra is also a coalgebra. · In this course, an algebra homomorphism (alg. map) preserves the curit.

<u>DEF</u>. A bialgebra (over \mathbb{R}) is a 5-tuple (B, M, M, Δ , ε), where (B, μ, η) is an algebra, (B, Δ, ε) is a coalgebra. s.t. either of the following equivalent conditions holds: • Δ, ε are algebra homomorphisms (The equivalence is left • μ, η are coalgebra homomorphisms. as exercise) A subspace I of a bialgebra B is a (two-side) bi-ideal if it is both an ideal and a coideal A K-linear map between two bialgebras is a bialgebra homomorphism if it is both an algebra map and a coalgebra map. Example. For any group G, RG, w/ algebra / coalgebra structures defined before, is a bialgebra : $\forall g, h \in G$, $\Delta(gh) = gh \otimes gh = (g \otimes g) \cdot (h \otimes h) = \Delta(g) \cdot \Delta(h)$ E(gh) = 1 = E(g) E(h). fundamental example of cocommunitative bialgebras. Example. For any Lie algebra J, $\mathcal{U}(G)$ is a bialgebra w/ algebra / coalgebra tructures above.

$$\Rightarrow \Delta^{*}(B^{\circ} \otimes B^{\circ}) \equiv B^{\circ}, \quad \varepsilon^{*}(k) \equiv B^{\circ} \Rightarrow (B^{\circ}, \Delta^{*}, \varepsilon^{*}) is$$

a subalgebra of $(B^{*}, \Delta^{*}, \varepsilon^{*})$.

Next show : μ^{*}, η^{*} are algebra maps. $\forall f, g \in B^{\circ}, a, b \in B$.

 $\cdot \langle \mu^{*}(f), \mu^{*}(g), a \otimes b \rangle \stackrel{?}{=} \langle \mu^{*}(fg), a \otimes b \rangle$

 $(left as exercise) \quad \langle fg, \mu^{*}(a \otimes b) \rangle$

 $\Sigma \langle f(0, g_{0}) \otimes f_{00} g_{00}, a \otimes b \rangle \quad \langle fg, ab \rangle$

 $\Sigma \langle f(0, g_{0}) \otimes f_{00} g_{00}, a \otimes b \rangle \quad \langle fg, ab \rangle$

 $Te call \quad \Sigma \langle f_{00}, x \rangle \langle f_{00}, g \rangle = f(xg), \forall x, g \in B$.

DEE. Let C be a coalgebra.
• An element
$$x \in C$$
 is group-like if $\Delta(x) = x \otimes x$ and if $E(x) = 1$.
The set of group-like elements in C is denoted by $G(C)$.
• For any group-like elements $g, h \in G(C)$, the set of $(g, h) - primitive$
elements of C is denoted by
 $P_{g, h}(C) := f x \in C | \Delta(x) = x \otimes g + h \otimes c f$.
• If B is a bialgebra, $P(B) := P_{i,i}(B)$. The elements if $P(B)$
are called primitive.

Example. For any Lie algebra of, and
$$x \in 0 \in \mathcal{U}(0)$$
 is primitive. i.e.,
 $x \in \mathcal{P}(\mathcal{U}(0))$.

<u>LEM 4.6</u> If C is a coalgebra, G(C) is a linearly independent subset of C. <u>Hint</u>. Since E is linear, $0 \notin G(C)$, so any single element of

G(C) forms a linearly independent set.
Let
$$n := \min \quad \{m \in N \mid ang \quad \forall m \text{ elements } in \quad G(C) \quad is \quad linearly independent \}.$$

Then $n \ge 1$. Suppose $g = \lambda_1 g_1 + \dots + \lambda_n g_n$ for distinct elements
 $g_1 g_1, \dots, g_n \in G(C), \quad w/ \quad \lambda_1, \dots, \quad \lambda_n \in \mathbb{R}.$ Then on the one hand,
 $\Delta(g) = g \otimes g = \sum_{i,j=1}^n \lambda_i \quad \lambda_j \quad g_i \otimes g_j$
 $i,j=1$

On the other hand, $\Delta(g) = \Delta(\sum_{j=1}^{n} \lambda_j g_j) = \sum_{j=1}^{n} \lambda_j g_j \otimes g_j$.

By assumption.
$$\{g_i \otimes g_j \mid i, j = 1, ..., n\}$$
 is linearly independent.
No $n=1$, $g = \lambda_1 g_1$. Apply ε on both sides. $l = \lambda_1$, $\Rightarrow g = g_1$, $\Rightarrow < !$

Rmk.
• For
$$C = IRG$$
, $G(C) = G$. However, for general coalgebra G' ,
 $G(G')$ may not have additional structures. For ⁹ bialgebra B, $G(B)$ is
a monoid.

$$E_{\underline{nample}} \quad Let \ A \quad be \ any \ algebra. \ Define \qquad f: A \rightarrow k$$

$$Alg (A, k) := \begin{cases} f \in A^* \mid f \text{ is an algebra map } \\ f \in Alg (A, k) \quad iff \qquad f(I_A) = 1 \ , \text{ and } \forall a, b \in A,$$

$$\langle \mu^*(f), a \otimes b \rangle = f(ab) = f(a) f(b) = \quad \langle f \otimes f, a \otimes b \rangle$$

$$iff \qquad \mu^*(f) = f \otimes f \quad and \quad \eta^*(f) = 1 \quad iff \quad f \in G(A^\circ).$$

$$i.e., \quad Alg(A, k) = G(A^\circ).$$

Example. For any group G, consider R.G. By Prop 44,
$$R(G) := (RG)^{\circ}$$

is also a bialgebra, which is called the bialgebra of representative functions
on G. By LEM 3.4.
 $R(G) = \frac{3}{5} f C(RG)^{*} | dim (G \rightarrow f) < \infty \frac{3}{5}$
The multiplication on $R(G)$ is the pointwise multiplication. Indeed,
 $\forall f, g \in R(G) (or (RG)^{*})$ and $x \in G$,
 $(fg)(x) = \langle f \otimes g, \Delta(x) \rangle = \langle f \otimes g, x \otimes x \rangle = f(x) g(x)$.
Moreover, $\langle \mu^{*}(f), x \otimes g \rangle = f(xy)$, $\forall x, g \in G$.
In general, hard to know how to write $M^{*}(f) = \sum_{i \neq j} fw \otimes f(i)$ $w' explicit$
 $f(i)$, $f(i)$. However, when G is finite. define. for any $x \in G$,
 $ex \in (RG)^{*}$ by $ex(y) := \delta_{x,g}$, $\forall g \in G$.
No $\frac{1}{2} ex | x \in G\frac{1}{2}$ is a basis for $(RG)^{*} = R(G)$. Then
 $\langle \mu^{*}(e_{x}), x \otimes b \rangle = \langle ex, xb \rangle = \delta_{x,ab} = \sum_{i \neq j} \langle eg \otimes e_{2}, x \otimes b \rangle$
 $y_{b=x}^{*}$

$$\Rightarrow \mu^{*}(e_{\chi}) = \sum e_{\chi} e_{\chi} e_{z}$$

$$y_{z=\chi}$$

$$\Rightarrow \mu^{*}(e_{x}) = \sum_{\substack{g_{k}=x}} e_{y} \otimes e_{k}.$$

$$(n \times n) - matrices over R$$

$$\binom{(n \times n) - matrices over R}{\binom{n}{j}}$$

$$\frac{E_{xample}}{\sum_{ij} Let} B = O(M_{n}(k)) = R[X_{ij} | 1 \le i, j \le n]. where$$

$$X_{ij} : M_{n}(k) \rightarrow k \qquad "coordinate function"$$

$$a \longmapsto a_{ij}$$

One can define a product on B by pointwise multiplication. As an algebra. B is the course polynomial ring in the na indeterminants {Xij}.

One can also define a coproduct on B by "the dual of matrix multiplication".

$$\Delta(X_{ij}) = \sum_{k=1}^{n} X_{ik} \otimes X_{kj} \qquad By setting \ \mathcal{E}(X_{ij}) = \delta_{i,j},$$

B becomes a bialgebra. If $X := [X_{ij}]$ the matrix of coordinate functions, then $\langle det(X), a \rangle = det(a)$ for $a \in M_n(\mathbb{R})$. One can show that $det(X) \in G(B)$. (by multiplicativity of det w.r.t. matrix multiplication).

Example. For any coalgebra C, the convolution product on $C^* = Hom_{R}(C, R)$ is exactly Δ^* .

DEF. Let H be a bialgebra. An element $S \in Hom_{\mu}(H, H)$ which is an inverse to id_{H} under the convalution product is called an antipode of H.

<u>Rmk</u>. • Antipode may not exist.

· Unique if exists.

• In sigma notation,
$$S \in End_{\mathbb{R}}(H)$$
 is an antipode of H if

$$\begin{pmatrix}
(S \times id)(x) = \sum_{(x)} S(x_{(1)}) x_{(a)} = \eta E(x) = E(x) \cdot 1H \\
(x)
\end{pmatrix}$$

$$= (id \times S)(x) = \sum_{(x)} x_{(x)} S(x_{(2)}), \forall x \in H.$$

DEF. A Hopf algebra is 6 - tuple $(H, \mu, \eta, \Delta, \varepsilon, S)$ s.t. $(H, \mu, \eta, \Delta, \varepsilon)$ is a bralgebra, and $S \in End_{k}(H)$ is an autipode of H.

<u>Example</u> Let G be a group. Extending $S(g) := g^{-1}$ ($\forall g \in G$) linearly makes $k \in a$ Hopf algebra.

For any Hopf algebra H. and any g & G(H), we have

$$\sum_{\substack{(g) \\ (g)}} S(g(i)) g(i) = S(g) \cdot g = \varepsilon(g) \cdot 1_{H} = 1_{H} = g \cdot S(g) = \sum_{\substack{(g) \\ (g)}} g_{(i)} S(g_{(i)})$$

 \Rightarrow g is invertible and $S(g) = g^{-1}$. Consequently, G(H) is a group.