Lecture 4
Last time:
convolution product on $\operatorname{Hom}_{k}(C, A)$

$$
\begin{aligned}
f \times g & :=\mu_{A} \circ(f \otimes g) \cdot \Delta_{c} \\
(f \times g)(c) & =\sum_{(c)} f\left(c_{(1)}\right) g\left(c_{(2)}\right), \forall c \in C
\end{aligned}
$$

Antipode: for a bialgetra B, an antipode is an element $S \in \operatorname{Hom}_{i k}(B, B)$ that is inverse to id H under $*$.

$$
\begin{aligned}
(S \times i d)(x) & =\sum_{(x)} S(x(1)) x_{(2)}=\varepsilon(x) \cdot 1_{H}(=\eta(\varepsilon(x))) \\
& =\sum_{(x)} x_{(1)} S\left(x_{(2)}\right)=(\text { id } * S)(x)
\end{aligned}
$$

Hops algebra: a bialgetra w/ an antipode.
graplike
Recall : for any Hop alg $H, \forall g, h \in G(H), \quad S(g h)=(g h)^{-1}=h^{-1} g^{-1}$ $=S(h) \cdot S(g)$.

Prop 5.7 Let $(H, \mu, \eta, \Delta, \varepsilon, S)$ be a Hoof algeha. Then
(1) S is an algebra anti-homomoyplism
(a) S is a coalgebre anti-homomorphism, i.e., $\forall x \in H$,

$$
(S \otimes S) \Delta(x)=\underset{\substack{1 \\ \text { "war" }}}{\tau} \Delta(S(x)) \quad \text { and } \quad \varepsilon(S(x))=\varepsilon(x) .
$$

Sketch. Consider the bialgetra $H \otimes H$ wi commit $\varepsilon_{H \otimes H}(x \otimes y)=\varepsilon(x) \varepsilon(y)$ Define $\varphi, \psi: H \otimes H \rightarrow H$ by

$$
\varphi(x \otimes y):=S(x y), \quad \psi(x \otimes y)=S(y) S(x) . \quad(\forall x, y \in H)
$$

WTS: $\varphi * \mu=\underbrace{\eta \circ \varepsilon_{H \odot H}}=\mu * \psi$. in $H_{o m}^{k}(H \otimes H, H)$.
unit in $\operatorname{Hom}_{12}(H \otimes H, H)$ under x

$$
\begin{aligned}
& \forall x, y \in H . \\
&(\varphi \times \mu)(x \otimes y)=\mu\left(\sum \varphi\left(x_{(1)} \otimes y_{(1)}\right) \otimes \mu\left(x_{(2)} \otimes y_{(2)}\right)\right) \\
&= \sum S\left(x_{(1)} y_{(1)}\right) x_{(2)} y_{(2)}=\sum S\left((x y)_{(1)}\right)(x y)_{(2)}=\varepsilon(x y) 1_{H} \\
&= \varepsilon(x) \varepsilon(y) 1_{H}=\eta \varepsilon_{H} \otimes H(x \otimes y) . \\
&(\mu \times \psi)(x \otimes y)=\mu\left(\sum \mu\left(x_{(1)} \otimes y_{(1)}\right) \otimes \psi\left(x_{(2)} \otimes y(2)\right)\right) \\
&= \sum x_{(1)} \underbrace{y_{(1)} S\left(y_{(2)}\right) S\left(x_{(2)}\right)=\eta \varepsilon_{H \otimes H(x \otimes y)}}_{(1)}
\end{aligned}
$$

Therefor, $\quad \varphi=\varphi \times(\mu * \psi)=(\varphi * \eta) \times \psi=\psi$.
Moreover, $\quad 1_{H}=\varepsilon\left(1_{H}\right) 1_{H}=S\left(1_{H}\right) \cdot 1_{H}=S\left(1_{H}\right)$. so S is an algeha auti-homo mophisem.

To show S is a coilgeha auti-homomophism, consides

$$
\Phi, \Psi: H \rightarrow H \otimes H \quad \text { by } \quad \Phi:=\Delta S \quad . \quad \Psi:=\tau(S \otimes S) \Delta
$$

Then show $\Phi * \Delta=\eta_{H \otimes H} \varepsilon=\Delta * \Psi$.

In sigma notation. $\quad \sum S\left(x_{(1)}\right) \otimes S\left(x_{(2)}\right)=\sum(S x)_{(2)} \otimes(S x)_{(1)}$

As a consequence, $S^{2}=S \cdot S$, is an algebra homomophisum.

PRop 5.9 TFAE.
(1) $\quad \sum S\left(x_{(2)}\right) x_{(1)}=\varepsilon(x) 1_{H}=\eta \varepsilon(x), \quad \forall x \in H$.
(d) $\quad \sum \quad x_{(2)} S\left(x_{(1)}\right)=\varepsilon(x) 1_{H}=\eta \varepsilon(x), \quad \forall x \in H$
(3) $S^{2}=i d$.

Consequently, if H is commutative or cocommutative, then $S^{d}=i d$.

PF. (1) \Rightarrow (3). Assume (1)
Prop 5.7

$$
\begin{aligned}
\left(S \times S^{2}\right)(x) & =\sum S\left(x_{(1)}\right) S^{\alpha}\left(x_{(2)}\right) \stackrel{\downarrow}{=} S\left(\sum S\left(x_{(2)}\right) x_{(1)}\right) \stackrel{(1)}{=} S\left(\varepsilon(x) f_{H}\right) \\
& =\varepsilon(x) 1_{H}=\eta \varepsilon(x) .
\end{aligned}
$$

so $S^{2}=\eta \varepsilon \times S^{2}=$ id $\times\left(S \times S^{2}\right)=$ id
(3) $\Rightarrow(1)$. Assume (3).

$$
\begin{aligned}
\sum S\left(x_{(2)}\right) x_{(1)} & =\sum_{1} S\left(x_{(2)}\right) S^{2}\left(x_{(1)}\right)=S\left(\sum S\left(x_{(1)}\right) x_{(2)}\right)=S\left(\varepsilon(x) 1_{H}\right) \\
& =\varepsilon(x) 1_{H}=\eta \varepsilon(x) .
\end{aligned}
$$

$(\alpha) \Leftrightarrow(3)$ is proved similarly.

Example. $U(g)$ is a Hoof algebra w/ antipode $S(x)=-x . \forall x \in \mathcal{F}$. co commutative.

Example. Taft algebras.
Let $n \geqslant \alpha$ be an integer and assume \mathbb{k} contains a primitive n-th root of unity ζ.

The Taft algetra $T_{n^{2}}(\zeta)$ is a k-algebra defined by

$$
T_{n^{2}}(\xi):=\mathbb{k}\left\langle x, g \mid x^{n}=0, g^{n}=1, x g=5 g x\right\rangle
$$

Clearly, $\operatorname{dim}_{k}\left(T_{n^{2}}(\xi)\right)=n^{2}{ }_{w} /^{\text {h}}$ basis $\left\{g^{i} x^{j} \mid i, j=0, \cdots, x-1\right\}$.
$T_{n^{2}}(\xi)$ has the following coalgeba structure and autipude:

$$
\begin{array}{ll}
\Delta(g)=g \otimes g, & \Delta(x)=x \otimes 1+g \otimes x, \\
\varepsilon(g)=1, & \varepsilon(x)=0 \\
S(g)=g^{-1}, & S(x)=-g^{-1} x .
\end{array}
$$

$T_{n^{2}}(\xi)$ is $\underbrace{\text { non-commutative, non-cocommutative Hopf algetra. }}_{\downarrow}$
if $\operatorname{orl}(s)<\infty$, then s hes to
have even order.

$$
\begin{aligned}
& S^{2}(g)=g, \quad S^{2}(x)=S(S(x))=S\left(-g^{-1} x\right)=-S(x) \underbrace{S\left(g^{-1}\right)} \\
&=g^{-1} x g=\zeta x \\
& \Rightarrow \quad S^{2}\left(g^{i} x^{j}\right)=\zeta^{j} g^{i} x^{i} . \forall 0 \leq i, j \leq n-1 . \\
& \Rightarrow \operatorname{ord}\left(S^{2}\right)=n, \text { or } \operatorname{ord}(S)=2 n .
\end{aligned}
$$

The smallert non-comm., non-cocomm. Hopf aly is $T_{4}(-1)$.

Rmk. ヨ Hors algeha whore antijude has infinite order. (Sweedter's book). By integal thery, such Hopf aly must be ∞-dim'l.

Prop 5.11. If $(H, \mu, \eta, \Delta, \varepsilon, S)$ is ${ }^{a}$ Hopf algeha, then $\left(H^{\circ}, \Delta^{*}, \varepsilon^{*}\right.$, $\left.\mu^{*}, \eta^{*}, S^{*}\right)$ is also a topf algebra.

Sketch. By Prop 4.4, it remains to show that $S^{*}\left(H^{\circ}\right) \subseteq H^{\circ}$, and S^{*} satisfies the antipode conditions.

$$
\begin{aligned}
& \forall a, b \in H, f \in H^{*}, \quad\left\langle a-S^{*}(f), b\right\rangle=\left\langle S^{*}(f), b a\right\rangle=\langle f, S(b a)\rangle \\
& =\langle f, S(a) S(b)\rangle=\langle f<S(a), S(b)\rangle=\left\langle S^{*}(f-S(a)), b\right\rangle
\end{aligned}
$$

Therefore. $H \rightarrow S^{*}(f)=S^{*}(f<S(H)) \subseteq S^{*}(f<H)$. Hence, if $f \in H^{\circ}$, then by $\operatorname{LEM} 3.4, \quad S^{*}(f) \in H^{\circ}$.

To check the antipole condition of $S^{*}: \forall x \in H, f \in H^{\circ}$,

$$
\begin{aligned}
& \sum_{(f)}\left\langle S^{*}(f(1)) f(2), x\right\rangle=\sum_{(f)}\left\langle\Delta^{*}\left(S^{*}\left(f_{(1)}\right) \otimes f(2)\right), x\right\rangle \\
= & \sum_{(f),(x)}\left\langle S^{*}(f(1)), x_{(1)}\right\rangle\left\langle f(x), x_{(2)}\right\rangle=\sum_{(f),(x)}\left\langle f(1), S\left(x_{(1)}\right)\right\rangle\left\langle f\left((2), x_{(x)}\right\rangle\right. \\
= & \sum_{(f),(x)}\langle\underbrace{f(1) \otimes f(2)}_{\mu^{*}(f)}, S(x(1)) \otimes x(x)\rangle \\
= & \sum_{(x)}\left\langle f, S\left(x_{(1)}\right) x_{(x)}\right\rangle=\varepsilon(x) f\left(1_{H}\right)=\left\langle\varepsilon^{*} \eta^{*}(f), x\right\rangle .
\end{aligned}
$$

The other conditions are left as exercise.
86. Modules and comodules

Recall: a left module of a k-algeha A is a pair (M, γ) where M is a \mathbb{K}-space, $\gamma: A \otimes M \rightarrow M$ is a \mathbb{k}-linear map such that the following diagrams commute

The category of left A-modules is denoted by A Mod.

$$
\operatorname{Mod}_{\lambda}
$$

Example. Let A be an algebra. Recall we have defined $a \rightarrow f \in A^{*}$ by $\langle a \Delta f, b\rangle=\langle f, b a\rangle, \forall a, b \in A, f \in A^{*}$. Easy to check: $\left(A^{*}, \rightarrow\right) \epsilon_{A} \mathrm{Mod}$.

DEF. For a coalgetre C, a right C-comodule is a pair (M, P) where M is a \mathbb{k}-space, $P: M \rightarrow M \otimes C$ is a linear map sit.

are commutative. The category of right C-comodules is denoted by $C_{\text {mod }}{ }^{C}$
${ }^{C} C_{\text {mod }}$

Sigma notation for right comodules: $\quad f(m)=\sum_{(0)} \otimes m_{(1)} \in M \otimes C$, we understand that $m(i) \in C$ for all $i \neq 0$. Similary, for a left C-comodule $\left(N, \rho^{\prime}: N \rightarrow C \otimes N\right)$, write

$$
\rho^{\prime}(x)=\sum x_{(-1)} \otimes n_{(0)} \in C \otimes N .
$$

A comodule homomorphism $t / w\left(M, P_{N}\right)$ and $\left(N, P_{N}\right) \in C_{\text {mod }}{ }^{C}$ is
a linemen map $f: M \rightarrow N$ sit.

$$
\begin{gathered}
M \xrightarrow{f} N \\
P_{M} \downarrow \xrightarrow{\downarrow} N \otimes C \\
M \otimes C \xrightarrow{f \otimes i d} N \otimes C
\end{gathered}
$$

RMK 6.3. Recall: if C is a coalgeha, then C^{*} is an algeha. suppose $(M, \rho) \in C_{\text {mod }}{ }^{C}$ so that $\forall m \in M, \rho(m)=\sum m_{(0)} \otimes m_{(1)}$. Define $\tilde{P}: C^{*} \otimes M \rightarrow M$ by $\tilde{P}(f \otimes m):=\sum f(m(1)) \quad m_{(0)} \in M$ for any $f \in C^{*}$, then one can easily check $(M, \tilde{\rho}) \in C^{*} \operatorname{Mod}$. The converse is not trine in general. For an arbitrary $(M, \gamma) \in C^{*} M o d$, there may not be $P: M \rightarrow M O C$ sit. $(M, \rho) \in C_{m o d}{ }^{C}$ and $\tilde{\rho}=\gamma$. A C^{*}-module which has a C-comodule structure in the above fashion is called rational.

Example. C is a C-comodule (left and right) via $P: C \rightarrow C \otimes C$.

LEM 6.4. Suppose A is an alecto. If (M, P) is a right A°-comodule. then $w /$ the natural A-action $a \cdot m=\sum_{i=1}^{+} f_{i}(a) m_{i} \quad\left(\right.$ if $\left.P(m)=\sum_{i=1}^{r} m_{i} \otimes f_{i}\right)$ $A \cdot m$ is finite-dim'l for all $m \in M$.
Conversely, if M is a left A-module, and $A \cdot m$ is finite-dim'l for all $m \in M$, then M is naturally $a^{\text {right }} A^{0}$-comodule.

Sketch. (1) $\forall m \in M$ wo $P(m)=\sum_{i=1}^{r} m_{i} \otimes f_{i} \in M \otimes A^{0}$, we have
$A \cdot m \subseteq \operatorname{spanj} k\left\{m_{1}, \cdots, m_{r}\right\}$. (d) Conversely, fix $m \in M$, and
let $\left\{m_{1}, \cdots, m_{r}\right\}$ be a basis for $A \cdot m$. Then for any $a \in A$, $a \cdot m=\sum_{i=1}^{N} f_{i}(a) m_{i}$ for some $f_{i} \in A^{*}$. Now all the functionals mut. in A.
f_{i} vanishes on the ideal $\operatorname{ker}(A \xrightarrow{\text { mult.1n } A} A$. $(A \cdot m))$ which is cofinite, so $f_{i} \in A^{0}$. We are done by defining $\rho: M \rightarrow M \otimes A^{0}, P(m)=\sum_{i=1}^{\gamma} m_{i} \otimes f_{i}$.

Example. Consider $(C, \Delta) \in C^{\text {mod }}{ }^{C}$. By the above, we have a C^{*}-module structure on C by

$$
f \rightarrow c:=\sum f\left(c_{(a)}\right) \quad c_{(1)} \in C, \quad \forall f \in C^{*}, c \in C .
$$

Alternatively, $\forall f, g \in C^{*}, \quad\langle g, f \rightarrow c\rangle=\Sigma\left\langle f, c_{(2)}\right\rangle\left\langle g, c_{(1)}\right\rangle$ $=\langle g f, c\rangle$.
\rightarrow is the transpose of right malt. of C^{\prime}.
$(C, \rightarrow) \in c^{*} \operatorname{Mod}$.
Similarly. $(c,<) \in \operatorname{Mod} C^{*}$ wo $\langle g, c<f\rangle=\langle f g, c\rangle$ or

$$
c<f=\sum f\left(c_{(1)}\right) c_{(2)} . \quad \forall f, g \in C^{*}, c \in C .
$$

