Lecture 5
Last time: comodule C (coaly)

$$
\begin{array}{cc}
P: M \rightarrow M \otimes C & \text { coassociativity } \\
M \xrightarrow{\rho} M \otimes C & M \xrightarrow{\rho} M \otimes C \\
P \downarrow \downarrow \downarrow \text { id } \otimes \Delta & \otimes 1 \searrow \downarrow i d \otimes \varepsilon \\
M \otimes C \xrightarrow{\rho(1 d)} M \otimes C \otimes C & M \otimes k \\
P(m)=\sum m_{(0)} \otimes m_{(1)} & =\sum m_{0} \otimes m_{1} .
\end{array}
$$

- A C-comodule is naturally a C^{*}-module.
$\left(\begin{array}{l}C \text { is a comodule of itself via } \Delta: C \rightarrow C \otimes C \\ C \text { is a } C^{*} \text {-module: } \forall f \in C^{*}, \forall x \in C .\end{array}\right.$

$$
f \rightarrow c:=\sum f\left(c_{2}\right) c_{1} \in C
$$

$$
c \leftharpoonup f:=\sum f\left(c_{1}\right) c_{2} \in C
$$

A right subcomolule D of C is abs known as a right coideal of C. that means $\Delta(D) \subseteq D \otimes C$. Similarly, a left coideal E of C is a left sutcomodule, ie., $\Delta(E) \subseteq C \otimes E$.

Rut. Every left C^{*}-submodule $D \subseteq C$ is a right coideal. (This is a special case when the converse of the above holds). Choose $d \in D$.
Write $\Delta(d)=\sum_{i=1}^{n} d_{i} \otimes d_{i}^{\prime}$ for some $d_{1}, \cdots, d_{m} \in D$ and d_{m+1}, \cdots, d_{n} not sigma notation!
are linearly independent mod D. For any $f \in C^{*}, f \rightharpoonup d=\sum_{i=1}^{n} f\left(d_{i}{ }^{\prime}\right) \cdot d_{i} \in D$ By construction, $f\left(d_{i}^{\prime}\right)=0$ for all $i>m$. Since f is arbitrary, $d_{i}^{\prime}=0$ for all $i>m, i . e ., \Delta(d) \in D \otimes C$.

PRoP 6.6. Let G be any group. A vector space M has a $\mathbb{K} G$-comodule structure if and only if it is a G-graded module, that is. $M=\underset{g \in G}{\oplus} M g$.

Sketch. Assume (M,P) is a right $\mathbb{R} G$-comodule. Write $P(w)=\sum m_{g} \otimes g$ $g \in G$

$$
\text { for any } m \in M \text {. Coassociativity } \Rightarrow \sum_{g, h \in G}\left(m_{g}\right)_{h} \otimes h \otimes g=\sum_{g \in G} m_{g} \otimes g \otimes g
$$

so $P\left(m_{g}\right)=m g \otimes g$. Setting $M g:=\left\{m_{g} \mid m \in M\right\}$, then
$M_{g} \cap M_{h}=\delta_{g, h} M_{g}$. Moreover, the count condition implies $\forall m \in M$ $(i \| \otimes s)\left(\sum_{g \in G} m g \otimes g\right)=\sum_{g \in G} m_{g}=m \underset{\substack{\uparrow \\ 1 \in k_{k}}}{1}=m$. So $M=\underset{g \in G}{\oplus} M g$

Conversely, if $M=\underset{g \in G}{\oplus} \mathrm{Mg}$, then one can check directly that $P: M \rightarrow M \otimes \mathbb{R} G$, sending $m=\sum_{g \in G} m_{g}$ to $P(m):=\sum_{g \in G} m_{g} \otimes g$ is a right $\mathbb{R} G$-comodule structure on M.

Now assume H is a Hops algebra.
DeF. Let M be a left H-module. The invariants of H in M are elements of the set $M^{H}:=\{m \in H \mid \quad h \cdot m=\varepsilon(h) m, \forall h \in H\}$.
Let (M, ρ) be a right H-comodule. The coinvasiants of H in M ave elements of the set

Example.

- A trivial left H-module is an H-module M sit. $M^{H}=M$.
- Let $H=\mathbb{k} G$. If M is a left H-module, then $M^{H}=M^{G}$. If M is a right H-comodule, then $M^{c o H}=M e$, in light of the decomparition $M=\underset{g \in G}{\bigoplus} M_{g} \quad\left(P_{\text {RoD }} 6.6\right)$.

A direct consequence of LEM 6.4 (last time) implies

Prop 6.9. (1) Let (M, P) is a right H-comodule, and consider its left H^{*} - module structure, then $M^{H^{*}}=M^{\omega H}$.
(a) Let M be a left H-module sit. it is also a right H°-comodule. Then $M^{H}=M^{C H^{\circ}}$.

The whole next chapter will focus on H^{H}, where H acts on itself by left / right multiplication.

Tense product of modules / co modules.
Given $\left(V, \varphi_{V}\right),\left(W, \varphi_{W}\right) \in{ }_{H} M o d, V / \otimes W$ is naturally an H-module via $\Delta: \quad h \cdot(v \otimes w):=\sum_{(h)}\left(h_{(1)} \cdot v\right) \otimes\left(h_{(2)} \cdot w\right)$ $\forall h \in H, v \in V, w \in W$.
In terms of maps, the module structure on $V \otimes W$ is

$$
\begin{aligned}
\varphi_{V \otimes W}:= & \left(\varphi_{r} \otimes \varphi_{W}\right) \cdot(i d \otimes r \otimes i d) \circ(\Delta \otimes i d \otimes i d) \\
& H \otimes V \otimes W \rightarrow H \otimes H \otimes V \otimes W \rightarrow H \otimes V \otimes H \otimes W \rightarrow V \otimes W .
\end{aligned}
$$

Similarly, if $\left(V, P_{V}\right),\left(W, \rho_{W}\right) \in C_{\text {mod }}{ }^{H}$, then $\left(V \otimes W, \rho_{V \otimes W)}\right.$ is abs a right H-comudule, where

$$
\begin{aligned}
& \text { PV®w : }=(i d \otimes i d \otimes \mu) \circ(i d \otimes \tau \otimes i d) \circ\left(P_{v} \otimes P_{w}\right) \\
& V \otimes W \rightarrow V \otimes H \otimes W \otimes H \rightarrow V \otimes W \otimes H \otimes H \rightarrow V \otimes W \otimes H . \\
& \text { i.e., } \quad P_{v \otimes w}(v \otimes w)=\sum v_{(0)} \otimes w_{(0)} \otimes v(1) w_{(1)} .
\end{aligned}
$$

DEF. Let H be a Hops algebra. A sight H-Hoof module is a triple $(M, \gamma: M \otimes H \rightarrow M, \rho: M \rightarrow M \otimes H)$ sit.
(1) (M, γ) is a right H-module
(d) (M, ρ) is a right H-comodule
(3) $P: M \rightarrow M \oplus H$ is a right H-module map, where H acts on itself by right multiplication.

Can rewrite the last condition in the above def as

$$
\begin{aligned}
& M \xrightarrow{\rho} M \otimes H " \prime \\
&(1) \cdot h \downarrow \sum() \cdot h \\
& M \sum m_{0} \cdot h_{1} \otimes m h_{1} h_{2} \imath_{"} \\
& M \otimes H
\end{aligned}
$$

We can also replace condition (1) w/ the condition that M is a right K-module, where K is a Hops subalgeha of H, then M is called a right "sub Hapfalgetra"
(H, K)-Hops module. The category of all right (H, K)-Hops modules is denoted by $H \bmod _{k}^{H}$. It is easy to define ${ }^{H} H_{\bmod }^{k}$, ${ }_{K} H_{\bmod }{ }^{H}$ and ${ }_{k}^{H} H$ mod.

Example. H itself is an H-Hops module via $P=\Delta$.

- For any $W \in \operatorname{Mod}_{H}, W \otimes H$, equipped wo the natural module structure, is an H-Hop module via $i_{w} \otimes \Delta: W \otimes H \rightarrow W \otimes H \otimes H$.
right the right H-Hop module
Let W be a trivial ${ }^{\gamma} H$-module, consider ${ }^{V} W \otimes H$ as above. For all $w \in W$, and $a, b \in H$, we have $(w \otimes a) \cdot b=\sum w \cdot b_{1} \otimes a b_{2}=\sum w \cdot \varepsilon\left(b_{1}\right) \otimes a b_{2}$ $=w \otimes a b$. In other words. the H-module structure on $W \otimes H$ is id $\otimes \mu$

For any vector space V, it is eng to check that $\left(V \otimes H, i i_{V} \otimes \mu, i d_{\nu} \otimes H\right)$ is a right H-Hops module. We call it the trivial right H-Hops module structure on $V \otimes H$.

THM 6.12 (Fundamental Theorem of Hops Modules)
Let H be a Hop algesia and $M \in H_{\bmod }^{H} H^{H}$. Then $M \cong M^{\text {co H }} \otimes H$ as right H-Hops modules, where $M^{\omega H} \otimes H$ is endowed wt the trivial right H-Hops module structure. In particular, M is a fee e right H-module of rank $\lim _{k}\left(M^{\omega H}\right)$.

Sketch. Define $\beta: M \rightarrow M \otimes H$ by $m \mapsto \sum_{1} m_{0} \cdot S\left(m_{1}\right) \otimes m_{2}$.
We first show that $\beta(M) \subseteq M^{\text {cot }} \otimes H$. by showing $P\left(\sum m_{0} \cdot S\left(m_{1}\right)\right)=\sum m_{0} \cdot S\left(m_{1}\right) \otimes 1_{H}$. for all $m \in M$. $P\left(\sum m_{0} \cdot S\left(m_{1}\right)\right)=\sum\left(m_{0}\right) \cdot\left(S\left(m_{1}\right)\right) \otimes\left(m_{0}\right)_{1} \cdot\left(S\left(m_{1}\right)\right)_{\alpha}$
(by def of terf modules (*))

$$
=\sum m_{0,0} \cdot S\left(m_{1,2}\right) \otimes m_{0,1} \cdot S\left(m_{1,1}\right) \quad\binom{\text { antic conullipliatisity }}{\text { of } S}
$$

$$
\begin{aligned}
& =\sum m_{0} \cdot S\left(m_{3}\right) \otimes m_{1} \cdot S\left(m_{2}\right)=\sum m_{0} \cdot S\left(m_{2}\right) \otimes \varepsilon\left(m_{1}\right) \cdot 1_{H} \\
& =\sum m_{0} \cdot S\left(m_{1}\right) \otimes 1_{H} .
\end{aligned}
$$

$$
\forall m^{\prime} \in M^{\infty 0 H}, h \in H
$$

Define $\alpha: M^{\omega 0 H} \otimes H \rightarrow M$ by $m^{\prime} \otimes h \mapsto m^{\prime} \cdot h^{r}$, we check α and β are inverse to each other. Indeed, $\forall m^{\prime} \in M^{\text {col }}, h \in H$,

$$
\beta \alpha\left(m^{\prime} \otimes h\right)=\beta\left(m^{\prime} \cdot h\right)=\sum_{H}\left(m^{\prime} \cdot h\right)_{0} \cdot S\left(m^{\prime} \cdot h\right)_{1} \otimes\left(m^{\prime} \cdot h\right)_{2}
$$

Sine $m^{\prime} \in M^{\mathrm{COH}}$ and P is a ${ }^{\text {Hop }}$ module \uparrow map, we have

$$
\begin{aligned}
(P \otimes \text { id }) & \left(P \quad\left(m^{\prime} \cdot h\right)\right)=\sum\left(m^{\prime} \cdot h_{1}\right) h_{2} \otimes h_{3} \\
& P\left(m^{\prime}\right) \cdot h=\left(m^{\prime} \otimes 1\right) \cdot h=m^{\prime} \cdot h_{1} \otimes h_{2}
\end{aligned}
$$

modiste map

So $\beta \alpha\left(m^{\prime} \otimes h\right)=\sum\left(m^{\prime} \cdot h_{1}\right) \cdot S\left(h_{2}\right) \otimes h_{3}=\sum m^{\prime} \cdot\left(h_{1} S\left(h_{2}\right)\right) \otimes h_{3}$

$$
=\sum m^{\prime} \varepsilon\left(h_{1}\right) \otimes h_{2}=m^{\prime} \otimes h
$$

Conversely, for any $m \in M$,

Now we check α is a right H-comodule map. Choose any m' $\in M^{c H H}$, $h, k \in H$, we have

$$
\begin{aligned}
& \quad \rho \alpha\left(m^{\prime} \otimes h\right)=\rho\left(m^{\prime} \cdot h\right) \stackrel{d}{=} m^{\prime} \cdot h_{1} \otimes h_{2} \\
& =(\alpha \otimes i d)(i d \otimes \Delta)\left(m^{\prime} \otimes h\right) \quad \checkmark
\end{aligned}
$$

Finally, we check α is an H-module map.

$$
\begin{gathered}
\left(\alpha\left(m^{\prime} \otimes h\right)\right) \cdot k=\left(m^{\prime} \cdot h\right) \cdot k=m^{\prime}(h k) \\
=\alpha\left(\left(m^{\prime} \otimes h\right)_{i} k\right)=\alpha\left(m^{\prime} \otimes h k\right)^{\prime \prime} \\
i d \otimes \mu
\end{gathered}
$$

So α is an isomophisem of right H-Hopf-modules.

$$
\begin{aligned}
& \alpha \beta(m)=\alpha\left(\sum m_{0} \cdot S\left(m_{1}\right) \otimes m_{2}\right)=\sum m_{0} \cdot S\left(m_{1}\right) m_{\alpha}=\sum m_{0} \otimes \varepsilon\left(m_{1}\right) \\
& \text { count } \\
& =m \text {. }
\end{aligned}
$$

Example. Let G be any group, $H=\mathbb{R} G$, and let M be any sight $\mathbb{R} G-\gamma_{\text {module. }}$ $\Rightarrow\left(P_{\text {RoD }} 6.6\right) \quad M=\underset{g \in G}{\oplus} M g$. and $\rho\left(m_{g}\right)=m_{g} \otimes g$. For any $m_{g} \in M g$.

Also, G acts on M and P being a sight H-module map means $P(m \cdot h)$ $=\rho(m) \cdot h$. for all $h \in G$. That is, $\rho\left(m_{g} \cdot h\right)=m_{g} \cdot h \otimes g h$ $\Rightarrow M g \cdot h=M_{g} h$ for all $g, h \in G$. I_{n} particular. $M_{e} \cdot g=M g$. We can compare this wt the Fundamental Theorem: here, $M^{\text {col }}=M e$, and $M \cong M_{e} \otimes \mathbb{k} G$ as \mathbb{K} - Hops modules implies that $M g \cong M_{e} \otimes g$.

Although by Fundamental Theorem, all Hary-modules are trivial, but in practice, the difficulty is to prove a vector space has a H-Hopf module structure, so that the Fundamental Theorem can be applied. We will see this is Chapter 2.

