Lecture 6

Last time : Fundamental Theorem of Hopf modules $M \cong M^{COH} \otimes H$ $M^{COH} = \{m \in M \mid P(m) = m \otimes 1_H \}$

In this chapter, all Hopf algebras are assumed to be finite-dimit. nulese otherwise stated.

§ 2.1 Definition and existence <u>DEF</u>. Let H be a finite-dim'l Hopf algebra. A left integral in H is an element $\Lambda^{L} \in H$ such that $h \Lambda^{L} = \mathcal{E}(h) \Lambda^{L}$ for all $h \in H$; a right integral in H is an element $\Lambda^{R} \in H$ such that $\Lambda^{R} h = \mathcal{E}(h) \Lambda^{R}$ for all $h \in H$. The space of left (seep. sight) integrals in H is denoted by \int_{H}^{L} (reap. \int_{H}^{R}), and H is called uninus dular if $\int_{H}^{L} = \int_{H}^{R}$.

Example. Note that H^* is also a Hopf algebra. A left integral in H^* is also called a left cointegral of H. By definition, such an element $\lambda^{L} \in H^*$ satisfies $\varphi \cdot \lambda^{L} = \varepsilon_{H^*}(\varphi) \lambda^{L}$ for all $\varphi \in H^*$. Equivalently, $\lambda^{L} \in H^*$ is a cointegral of H if and only if for any $\varphi \in H^*$ and $z \in H$. $\xi \varphi \cdot \lambda^{L}$, $z > = \sum_{i} \varphi(z_{1}) \lambda^{L}(z_{2}) = \varphi(\sum_{i} z_{i} \cdot \lambda^{L}(z_{2}))$ dif $\varphi \mapsto \prod_{i=1}^{n} \varphi(1_{H} \cdot \lambda^{L}(z))$, if and only if $(id \otimes \lambda^{L}) \Delta(z) = \lambda^{L}(z) \cdot 1_{H}$. Similarly, a right cointegral of H is an element $\lambda^{R} \in H^*$ s.t.

$$(\lambda^R \otimes id) \Delta(x) = \lambda^R(x) \cdot 1_H \quad for all x \in H.$$

Example:
• If
$$H = lk G$$
 for a finite group G , then $\Lambda = \sum_{g \in G} g$ is both left and
night integral in H , and $\int_{H}^{L} = \int_{H}^{R} = lk \Lambda$.
In $H^{*} = (lk G)^{*}$, $\lambda = \delta e^{eH^{*}}$ is a left and right cointegral of H ,
for instance, (id $\otimes \delta e$) $\Delta(g) = (id \otimes \delta e)(g \otimes g) = \delta e^{e}(g) g = \delta e^{e}(g) e^{e}$
for all $g \in G$. Moreover, $\int_{H^{*}}^{L} = \int_{H^{*}}^{R} = lk \lambda$. Both H and H^{*} are unimodular.
and it has left and right integrals
• If H is commutative, then H is runimodular.
Basis : 1, x, g, gx , $x^{2} = 0$, $g^{2} = 1$, $xg = -gx$
• The Sweedler (Taft) elgebra $H = T_{H}(-1)$ is not unimodular.
It is easy to check that $\Lambda^{L} = x + gx$ is a left integral:
 $x \Lambda^{L} = x^{2} + xgx = 0 - gx^{2} = 0 = \epsilon(x) \Lambda^{L}$
 $g\Lambda^{L} = gx + g^{2}x = x + gx = \Lambda^{2} = \epsilon(g) \Lambda^{L}$.
In addition, $\int_{H}^{L} = lk \Lambda^{L}$. Animilarly, $\Lambda^{R} = x - gx$ is a right integral,
and has left and right integrals
 f

If H is cocommutative, it may not be unimodular : assume char k = 2. and η be the 2-dim'l Lie algebra $\eta = k \langle z, y | [z, y] = z \rangle$. Endow $\mathcal{U}(\eta)$ with the usual Hopf algebra structure, and let $B = \mathcal{U}(\eta)$ be the ideal generated by z^2 and $y^2 - y$, then B is a Hopf ideal and $H = \mathcal{U}(\eta)/B$ is a cocommutative 4-dim'l Hopf algebra with basis $j\overline{1}, \overline{z}, \overline{y}, \overline{zy} \overline{3}$. One can check that $\int_{H}^{L} = lk \overline{zy}$ while $\int_{H}^{R} = lk \overline{\eta} \overline{z} = lk(\overline{zy} + \overline{z})$. A finite - dim'l le-algebra A is a Frobenius algebra if there exists a non-degenerate associative bilinear form (\cdot, \cdot) : $A \otimes A \rightarrow k$, where associativity means (a, bc) = (ab, c) for all $a, b, c \in A$. For example, $M_n(lk)$ is a Frobenius algebra with (a, b) := Tr(ab).

THM 1.4 (Larson - Sweedler)
Let H be any finite - dimensional Hopf algebra. Then
(1)
$$\dim_{\mathbb{R}} \left(\int_{H}^{L} \right) = \dim_{\mathbb{R}} \left(\int_{H}^{R} \right) = 1$$

(2) the antipode S of H is bijective, and $S\left(\int_{H}^{L} \right) = \int_{H}^{R}$.
(3) H is a cyclic left and right H^{*} - module.
(4) H is a Frobenius algebra.

H^{*} is a night H-comodule by LEM 6.4 (Chap 1). More precisely, if $f q_1, ..., q_n 3$ is a basis of H^{*} and $\stackrel{\vee}{f} \in H^*$ be an arbitrary element, then there exists $h_1^f, ..., h_n \in H$ s.t. for any $g \in H^*$, $gf = \sum_{i=1}^n \langle g, h_i \rangle q_i$.

The H-comodule structure on
$$H^*$$
 is then
 $f: H^* \rightarrow H^* \otimes H$, $P(f):= \sum_{i=1}^{n} q_i \otimes h_i$
 $i=1$
(*)
Conversely, if $P(f) = \sum_{i=1}^{n} f_0 \otimes f_1$, then $gf = \sum_{i=1}^{n} \langle q_i, f_1 \rangle f_0$.

2. H^* is a right H-module via $\langle f - h, l \rangle := \langle f, l \cdot S(h) \rangle$ for any $f \in H^*$, $h, l \in H$. Equivalently, $f - h = S(h) \rightarrow f$

As noted above, the information of
$$P(f - h)$$
 can extracted from
 $g \cdot (f - h)$ when g varies in H^* . So it suffices to show that
 $g(f - h) = \overline{Z} \langle g, f_1 h_2 \rangle (f_0 - h_1)$

First, we study g(f - h). For any $x \in H$, on the one hand, $\langle g(f - h), x \rangle = \langle g(Sh - f), x \rangle = \sum \langle g, x, \rangle \langle Sh - f, x_a \rangle$ $= \sum \langle g, x, \rangle \langle f, x_a S(h) \rangle$.

Un the other hand,

$$\sum_{i} \langle (h_{a} \rightarrow g)f \leftarrow h_{i}, x \rangle = \sum_{i} \langle (h_{a} \rightarrow g)f, x S(h_{i}) \rangle$$

$$= \sum_{i} \langle h_{a} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{a} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{a} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{i} \rangle$$

$$= \sum_{i} \langle h_{i} \rightarrow g, (x S(h_{i}))_{i} \rangle \langle f, (x S(h_{i}))_{i} \rangle$$

$$= \sum_{i} \langle h_{i} - g, x_{i} S(h_{a}) \rangle \langle f, x_{2} S(h_{i}) \rangle$$

$$= \sum_{i} \langle g, x_{i} S(h_{i}) h_{i} \rangle \langle f, x_{2} S(h_{i}) \rangle$$

$$= \sum_{i} \langle g, x_{i} \rangle \langle f, x_{2} S(h) \rangle$$

$$A_{0} \qquad g(f - h) = \sum_{i} (h_{a} - g)f - h_{i} \qquad (x \neq)$$

Therefore, by (*) above and (**)

$$g(f - h) = \sum_{i=1}^{H} (h_{a} \rightarrow g)f - h_{i} = \sum_{i=1}^{H} (\langle h_{a} \rightarrow g , f_{1} \rangle f_{0}) - h_{i}$$

$$= \sum_{i} \langle h_{a} \rightarrow g, f_{1} \rangle (f_{0} \leftarrow h_{i}) = \sum_{i} \langle g, f_{1} h_{a} \rangle (f_{0} \leftarrow h_{i})$$

as desired.
1

Now choose $0 \neq \lambda \in \int_{H}^{L} + Hen \int_{H}^{L} = lk \lambda$. Let $\alpha : lk \lambda \otimes H = M^{OH} \otimes H \longrightarrow M$. $\alpha(\lambda \otimes h) = \lambda - h = S(h) \rightarrow \lambda$ be the unep in the proof of the Fundamental Theorem of Hopf undules, then for any $k \in ker(S)$, $\alpha(\lambda \otimes k) = 0$. Since α is injective, $\lambda \neq 0$, so k = 0, which means S is injective. By dimension counting, N is also surjective. so S is bijective. Consequently, $S(\int_{H}^{L}) = \int_{H}^{R}$ be cause $S(\Lambda) \cdot h = S(S^{-1}h \cdot \Lambda) = S(E(S^{-1}h) \cdot \Lambda) = E(h) S(\Lambda) \Rightarrow S\Lambda \in \int_{H}^{R}$ for any $\Lambda \in \int_{H}^{L}$. Thus, $dim(\int_{H}^{R}) = 1$. We have (1) and (2). Fund. THM def (2) Let $\lambda \neq 0$ be as above. We have $H^* = \lambda - H \stackrel{=}{=} SH \stackrel{\longrightarrow}{\to} \lambda \stackrel{=}{=} H \stackrel{\longrightarrow}{\to} \lambda$ Dualizing the equalities gives (3). Finally, define a bilinear form

$$(\cdot, \cdot)$$
 : $H \otimes H \longrightarrow k$, $(h, k) := \langle \lambda, hk \rangle$, $\forall h, k \in H$.

It is easy to see that the form is bilinear and associative, and it rumains to show (\cdot, \cdot) is non-degenerate. Since H is finite-dimensional, we only need to show left non-degeneracy. Assume there exists $h \in H$ s.t. for any $k \in H$, $0 = (h, k) = \langle \lambda, hk \rangle = \langle k \rightarrow \lambda, h \rangle$, so $\langle H \rightarrow \lambda, h \rangle = 0$. By (3), $H \rightarrow \lambda = H^*$, so $\langle H^*, h \rangle = 0$. This means h = 0, and we are clone.

<u>Remark</u>. If A is a Frobenius algebra in the above sense, then $A \cong A^*$ structure via the from (\cdot, \cdot) . Then one can define a coalgebra by $(\Delta(x), a \otimes b)$ = (x, ab) and $\Re(x) = (x, 1_A)$ for all $x, a, b \in A$. The algebra and coalgebra structure can be generalized to define Frobenius algebra objects in tensor categories. (related to topological quantum field theory).

Example. When
$$H = IkG$$
 for a finite group G, the bilinear form is determined
by $\lambda = \delta_e \in \int_{H^*}^{L}$, thus for $x = \sum_{g \in G} g$, $g = \sum_{h \in G} b_h h$,
 $g_{GG} = \int_{H^*}^{L} f_{H^*}$, thus for $x = \sum_{g \in G} g = \int_{H^*}^{L} f_{GG} h$.

$$(x,y) = \langle \delta e, xy \rangle = \sum_{\substack{g \in G}} a_g b_{g-1} \in \mathbb{R}.$$