Lecture
$$\tilde{T}$$

Integral theory (for finite-dimensional Hopf alg H)
• $h \Lambda^{L} = \varepsilon(h) \Lambda^{L}$, $\forall h \in H$.
• THM 1.4. \forall Hopf alg H of dim < ∞ , dim $S_{H}^{L} = \dim \int_{H}^{R} = 1$,
S is bijective, $S(\int_{H}^{L}) = \int_{H}^{R}$, H is a Forbenuis algebra.

Sa.a. Maschke's Theorem

Let R be a ring, and M is a non-zero R-module. We call M reducible if there is a proper submodule $0 \neq N \notin M$, otherwise M is irreducible. If M is a direct sum of irreducible R-modules, then M is called completely reducible. In particular, the ring R is <u>semisimple</u> if R is completely reducible as an R-module.

[Curtis - Reiner] Representation theory of finite group and associative algebras.

The classical Maschke's Theorem says that if G is a finite group, then &G is semisimple if and only if 161 is invertible in 1k.

Translating this into the language of integrals, let $\Lambda := \sum_{\substack{g \in G \\ g \in G}} g \in \int_{\mathbb{R}} G$, then units in \mathbb{R} $\mathcal{E}(\Lambda) = |G|$, and $|G| \in \mathbb{R}^{\times}$ if and only if $\mathcal{E}(\Lambda) \neq 0$.

<u>THM 2.1</u> (LS) Let H be a finite-dimensional Hopf algebra. Then H is semisimple if and only if $\varepsilon(\int_{H}^{L}) \neq 0$, if and only if $\varepsilon(\int_{H}^{R}) \neq 0$.

PF. Assume H is semistimple. Since
$$\ker(\varepsilon)$$
 is an ideal of H, by complete
Left
reducibility, we may write $H = I \oplus \ker(\varepsilon)$ for some ideal $I \neq 0$ of H.
We claim $I \subseteq \int_{H}^{L}$. Choose $z \in I$, and $h \in H$. Since $h - \varepsilon(h) I_{H} \in \ker(\varepsilon)$.
So $h z = (h - \varepsilon(h) I_{H}) z + \varepsilon(h) z = \varepsilon(h) z$, and so $z \in \int_{H}^{L}$. Since
 $\int_{U}^{U} z = \int_{U}^{U} z + \varepsilon(h) z = \varepsilon(h) z$, and so $z \in \int_{H}^{L} z = \int_{U}^{U} z + \varepsilon(h) z = \varepsilon(h) z$.

Hence, $ker(\tilde{\pi})$ is an H-complement for N, so M is completely reducible. Therefore, H is semisimple. Finally, assume $\varepsilon(\int_{H}^{R}) \neq 0$, we can apply similar argument to right modules.

<u>Rmk</u>. THM 2.1 does not require the use of THM 1.4 : the existence of integrals follows from semisimplicity of H in this case.

A k-algebra A is separable (new k) if $A \otimes E$ is a semisimple algebra over E for every extension field E/k. In particular, separable algebras are necessarily semisimple. An intrinsic charactenization of separability is given as follows: a lk-algebra A is separable if and only if the multiplication $\mu: A \otimes A \rightarrow A$ admits a section $\sigma: A \rightarrow A \otimes A$ s.t. σ is an A - A bimodule map, i.e., write $\sigma(f_A) = \sum_{i=1}^{n} a_i \otimes b_i$ $\in A \otimes A$, then $a \rightarrow A \otimes A \rightarrow A$ $\sigma(a) = \sum_{i=1}^{n} a_{a_i} \otimes b_i = \sum_{i=1}^{n} a_i \otimes b_i a$, and $\sum_{i=1}^{n} a_{i} b_i = f_A$. In this case, the section σ is completely determined by the element $p := \sigma(f_A) \in A \otimes A$, which is called the apparability idempotent associated to σ . (By def, $p^a = p$).

See [CR].

Example. Fix
$$n \in \mathbb{N}$$
. Let $e_{ij} \in M_n(\mathbb{R})$ be the (i,j) -th matrix unit, then
 $\begin{cases} e_{ij} \mid i, j=1, \dots, n \end{cases}$ forms a basis for $M_n(\mathbb{R})$. Fix an integer $1 \le x \le n$, and
define $p_x := \sum_{j=1}^{n} e_{jx} \otimes e_{xj} \in M_n(\mathbb{R}) \otimes M_n(\mathbb{R})$, then p_x is a separability

idempotent of $M_n(lk)$. Indeed, $M(p_x) = \sum_{j=1}^n e_{jx} e_{xj} = \sum_{j=1}^n e_{jj} = id_n = 1_{M_n(lk)}$

and for any 1 = a, b = n,

$$e_{ab} \cdot p_x = \sum_{j} e_{ab} e_{jx} \otimes e_{xj} = e_{ax} \otimes e_{xb} = \sum_{j} e_{jx} \otimes e_{xj} e_{ab} = p_x \cdot e_{ab}$$

Therefore, Mn (1k) is separable.

over k

$$\frac{CoR 2.4}{Let H be a finite - dimensional semialimple Hopf algebra. Then H is separable
over lk, and for any Hopf subalgebra $K \in H$ such that H is free over K.
we have K semialimple.

$$\frac{H}{2} E.$$

$$\frac{3}{2} \frac{1}{2} \frac{$$$$

Now let K be a Hopf subalgebra of H s.t. H is free over K, and let $\{h_i\}$ be a free trasis of H as a K-module. Choose $\Lambda \in \int_{H}^{L} w/ \varepsilon(\Lambda) \neq 0$, we may write $\Lambda = \sum_{i} k_{i}h_{i}$. for some $k_{i} \in K$. Then for any $x \in K$, $\sum_{i} (x k_{i}) h_{i} = x \Lambda = \varepsilon(x) \Lambda = \sum_{i} (\varepsilon(x) k_{i}) h_{i}$ Since $\{h_i\}$ is a free K-basis, we have $x k_{i} = \varepsilon(x) k_{i}$ for all i, i.e., $k_{i} \in \int_{K}^{L}$ for all i. Now $\varepsilon(\Lambda) = \sum_{i} \varepsilon(k_{i}) \varepsilon(h_{i}) \neq 0$ implies that for some j, $\varepsilon(k_{j}) \neq 0$, so K is semisimple by THM 2.1.

<u>RMK</u>. In fact, all finite-dimensional Hopf algebras are free over Hopf subalgebras, and so all Hopf subalgebras of a finite-dimensional semisimple Hopf algebra are semisimple.

Let H be a finite-dim't Hopf algebra. For any
$$0 \neq \Lambda^{L} \in \int_{H}^{L}$$
, we have
 $\Lambda^{L}h \in \int_{H}^{L}$. Since $\dim(\int_{H}^{L}) = 1$, so $\Lambda^{L}h = \alpha(h)\Lambda^{L}$, where $\alpha(h) \in \mathbb{K}$.
It is clear that $\alpha \in H^{*}$, and for any $h, k \in H$,
 $\alpha(hk)\Lambda^{L} = \Lambda^{L}(hk) = (\Lambda^{L}h)k = \alpha(h)\Lambda^{L}k = \alpha(h)\alpha(k)\Lambda^{L}$, so
 $\alpha(hk) = \alpha(h)\alpha(k)$, i.e., $\alpha \in Alg(H, k) = G(H^{*})$
 \rightarrow group like elements in H^{*}

<u>Def</u>. Let H be a finite-dimensional Hopf algebra. The distinguished group-like element of H^{*} is the functional $\alpha \in G(H^*)$ such that $\Lambda^L h = \alpha(h) \Lambda^L$ for all $\Lambda^L \in \int_{H}^{L}$ and $h \in H$. The distinguished group-like element of H is the element $g \in G(H)$ such that $(\lambda^L \otimes id) \Delta(h) = \lambda^L(h) g$ for all $\lambda^L \in \int_{H^*}^{L}$ and $h \in H$.

If we start
$$w/ 0 \neq \Lambda^{R} \in \int_{H}^{R}$$
, then $S(\Lambda^{R}) \in \int_{H}^{R}$, so for any $h \in H$,
 $h \Lambda^{R} = S^{-1} (S(\Lambda^{R}) S(h)) = w(S(h)) \cdot S^{-1} (S(\Lambda^{R})) = a^{-1}(h) \Lambda^{R}$
 \uparrow
 $a \in G(H^{*})$
inverse in the
algebra H^{*} .

<u>COR</u>. If H is semissimple, then H is unimodular. LE. By THM 2.1, we may choose $0 \neq \Lambda \in \mathcal{S}_{H}^{L}$ w/ $\mathcal{E}(\Lambda) \neq 0$. Let $\alpha \in \mathcal{G}(H^{*})$ te the distringuished group like element, then for any $h \in H$,

 $\alpha(h) \varepsilon(\Lambda) \Lambda = \alpha(h) \Lambda = \Lambda h \Lambda = \varepsilon(h) \Lambda^{2} = \varepsilon(h) \varepsilon(\Lambda) \Lambda$

Since E(A) #0, we must have a (h) = E(h) for all hEH. i.e., H is unimodular.

§ 2.3. Commutative semisimple Hopf algebras.
An easy example of such
$$\frac{9}{7}$$
 Hopf algebra is $H = (kG)^*$ for a fimite group G.

Up to extension of field, this is the only example.

<u>THM 3.1</u> (Castrier) Let H be a finite-dim'l commutative semisimple Hopf algebra^V, thun there exists a group G and a separable extension field E/lk such that H $\bigotimes_{k} E \cong (EG)^{*}$ as Hopf algebras.

over k

<u>Sketch</u>. Since H is commutative and semi-simple, by Artin-Nedderbourn, $H = \bigoplus_{i}^{k} E_{i}$, where E_{i} are fields containing K. Moreover, each E_{i} is suparable over K by Cor 2.4. Thus, we may choose E to be a common extension field of all the E_{i} , which is suparable / K. It follows that $H \otimes E \cong E^{\odot n}$, where $n = \dim(H)$. $W \downarrow O G$, we may assume that $H \cong Ik^{\oplus n}$. Let $\{p_{i} \mid i=1, ..., n\}$ be a basis of or theogonal idempotents of H, and $G := \{g_{i} \mid i=1, ..., n\}$ be the corresponding dual basis for H^{*} . Since each $g_{i} \in Alg(H, K) = G(H^{*})$, so $G = G(H^{*})$. Moreover, by Lem 4.6 (Chop 1) $G(H^{*})$ is linearly independent. So $G(H^{*}) = G$ is a finite grap, and $H^{*}-KG$ is the group algebra.