Lecture 8

Last time : Maschke's Theorem $(\S_{a,a})$ If H is a finite-dim't Hopf algebra, then H is semisimple if and only if $\varepsilon(S_{H}^{L}) \neq 0$, if and only if $\varepsilon(S_{H}^{R}) \neq 0$.

(H-mod)
Recall in the proof of "
$$\Leftarrow$$
", to find the orthogonal complement of $N \subseteq M$,
we used $\Re(m) := \sum \Lambda_1 \cdot \pi (S(\Lambda_2) \cdot m)$ for $m \in M$ and $\pi : M \rightarrow N$ linear
projection, $\Lambda \in S_H^L$. \Box closely related to the Fro benins algebra structure of H

• distinguished group like element
• commutative semicimple Hopf algebra.
$$H \bigotimes E \cong (EG)^*$$
, E/I_R separable,
 $L \gg \S_{2.3.}$ $G = finite group.$

Continue §2.3 w/ a family of Lie algebras. over positive characteristic. introduced by Jacobson.

$$ad_{x}(p) = ad_{x}^{p}$$

If A is any algebra over $k \le char(lk) = p \neq 0$, then the associated Lie algebra A_L is restricted sr/[a,b] := ab - ba and $a^{(p)} = a^p$ for all $a, b \in A$. (see the note of Jared Warner on restricted Lie algebras)

Let $(J, (.)^{UJ})$ be a restricted Lie algebra, and let U(J) be the asual enveloping algebra. Let B be the ideal in U(J) generated by elements of the form $x^{P} - x^{UJ}$ for all $x \in J$, and define $u(J) = \frac{U(J)}{B}$, thun u(J) is called the restricted enveloping algebra, or u-algebra, of J. In fact, u(J) can be defined using the universal property of U(J). As for U(J), J embeds into $u(J)_{L}$ via $x \mapsto x+B$, and the [p]-map is the usual p-power map under this embedding.

A version of PBW theorem holds for $\kappa(q)$: given a basis for q', the ordered monomials in this basis, where the exponent of each element is bounded by p-1, form a basis for $\kappa(q)$.

Consequently, if of has dim $n < \infty$, then dim $(u(g)) = p^n$.

Finally, x(of) inherits the Hopf algebra structure from U(of), as one can check B is actually a Hopf ideal. $e_{i_{1}}^{a_{1}} e_{i_{a}}^{a_{2}} \cdots \in U(q)$ $e_{i_{1}}^{a_{1}} e_{i_{a}}^{p} \cdots + B \in u(q)$ $= e_{i_{1}}^{a_{1}} e_{i_{a}}^{p} \cdots + B$ $\underbrace{e_{i_{n}}^{a_{n}} e_{i_{n}}^{p} \cdots + B}_{i_{n}}$ $\underbrace{e_{i_{1}}^{a_{1}} (\sum_{k} e_{j_{k}}^{k} b_{k}) \cdots + B}_{i_{n}}$

THM 3.3 (Hochschild)

Let of be a finite-dimensional restricted Lie algebra over k of characteristic $p \neq 0$. Then n(7) is semisimple if and only if of is a belian and is spanned over k by $0j^{lpj}$.

<u>PE</u>. Let E be the algebraic closure of |k|. Since $n(\mathcal{G} \otimes \mathcal{E}) = n(\mathcal{G}) \otimes \mathcal{E}$ is semisimple if and only if $n(\mathcal{G})$ is semisimple, and $(\mathcal{G} \otimes \mathcal{E})^{[p]}$ spans $\mathcal{G} \otimes \mathcal{E}$ over E if and only if \mathcal{G} is spanned by $\mathcal{G}^{[p]}$ over |k|. So we may assume WLOG that $|k| = |\overline{k}|$ (elg. closed).

Assume of is abelian and is spanned by g^{P} . Then H = u(g) is a commutative Hopf algebra and the p-map is semilinear. Moreover, $H = H^{P}$, so $(\cdot)^{P}: H \rightarrow H$ is injective, and so H has no nilpotent elements, so it is semisimple.

Conversely, assume u(g) is semisimple. We first show that for any $x \in g$, $x \in \langle x \rangle^{p} \subseteq u(g)$, where $\langle x \rangle := \operatorname{Span}_{R} \{ x^{\ell \eta \Im^{i}} \mid i \in \mathbb{N} \} \subseteq g$. By definition, restricted $\langle x \rangle$ is an abelian ^YLie subalgebra of g. By the restricted PBW, H = u(g)is free over $K = u(\langle x \rangle)$, so by Corollary 2.4, K is semisimple. Therefore, there exists $\Lambda \in \int_{K}^{L} w/ \in (\Lambda) \neq 0$.

If
$$\lim_{n} (\langle x \rangle) = n$$
, then by definition, x satisfies a polynomial of the
form $f(x) = \sum_{i=0}^{n} a_i x^{pi} = 0$ w/ $a_i \in \mathbb{R}$, $a_n \neq 0$. (WTS: $a_0 \neq 0$).
 $\| = 0$ identify $x^{[\gamma]} = w/x^{\gamma}$ in $u(\gamma)$

$$a_0 x + a_1 x^p + \cdots + a_n x^{p^n}$$

(In fact, by the restricted PBW, f(x) is the minimal polynomial of x + m + k). Moreover, $\Lambda \in K$ can be written runiquely as $\Lambda = g(x) = \sum_{j=0}^{p^{-1}} b_j x^j \cdot w/b_j \in \mathbb{R}$, and $b_0 = \varepsilon(\Lambda) \neq 0$. By definition, $x\Lambda = \varepsilon(x)\Lambda = 0$, so f(x) divides x g(x). Comparing degrees, we have df(x) = x g(x) for some of $\in \mathbb{R}^{\times}$, i.e., $x(b_0 + b_1 x + \cdots) = d(a_0 x + a_1 x^0 + \cdots)$. Since bod $\neq 0$, we have and so $x = \sum_{i=1}^{n} C_{i} x^{p^{i}}$, where $C_{i} = -\frac{a_{i}}{a_{o}}$, $C_{n} = -\frac{a_{n}}{a_{o}} \neq 0$, so

$$a_0 \neq 0$$
, and $a_0 \quad x = \sum_{i=1}^{n} C_i x^{p^*}$, where $C_i = -\frac{a_i}{a_0}$, $C_n = -\frac{a_n}{a_0} \neq 0$, so

Finally, I satisfies a separable polynomial. Consequently, ad, satisfies a separable pelynomial, and its action on I is completely reducible. Let ye of be an eigenvector of adz. Then adx acts on the commutative ring w(<4>), and by definition. ad annihilates (y).

$$ad_{x} (y^{p}) = [x, y^{p}] = [y^{p}, x] = -ad_{y^{p}}(x)$$

$$= -ad_{y^{p}}(x) = -ad_{y}(x) = -[y, \dots, [y, [y, x]] \dots]$$

$$= [y, \dots, [y, [x, y]] \dots] = 0.$$

$$\int \int d_{x^{1}}(y) = \lambda y$$

However, $y \in \langle y \rangle^p$ by the above, so $ad_x(y) = 0$. Since g is spanned by eigenvectors of adx, we have $ad_x(g) = 0$, so x is central. Since x is arbitrary, g is abehian.

<u>LEM 3.4</u> Let J be a Lie algebra (resp., restricted Lie algebra) over characteristie $p \neq 0$. If $f \in U(q)^{\circ}(exp., u(q)^{\circ})$ is an algebra homomorphism, then $f'' = \varepsilon$. Sketch. Let H = U(9), it suffices to show that $f'(1) = i_H$ and f'(x) = 0, $\forall x \in 9$. By def, $f(I_H) = I_H$, so $f''(I_H) = f^{\otimes n} \left(\Delta^{[n]}(I_H) \right) = \left(f(I_H) \right)^n = 1$ for all $n \ge 0$.

For
$$x \in 0$$
, we use induction to show $f^{n}(x) = n f(x)$. When $n = 1$, trivial.
When $n > a$, by induction hypothesis, $f^{n}(x) = (f \times f^{n-1})(x)$
 $= (f \otimes f^{n-1})(x \otimes 1_{H} + 1_{H} \otimes x) = f(x) \cdot f^{n-1}(1_{H}) + f(1_{H})f^{n-1}(x)$
 $= f(x) + (n-1)f(x) = n f(x)$.
In postricular, $f^{p}(x) = p f(x) = 0$. The restricted case follows similarly.

<u>Cor</u> 3.5 Let char $(k) = p \neq 0$, and of a restricted Lie algebra over k of dimension $n < \infty$ such that n(q) is semisimple. Then for some finite separable field entension E/lk, we have $n(q) \otimes E \cong (E\Gamma)^*$, where $\Gamma \cong (\mathbb{Z}/p\mathbb{Z})^n$. <u>PF</u>. By THM 3.3, H = n(q) is commutative. By THM 3.1, $n(q) \otimes E \cong (E\Gamma)^*$ where E/lk is separable and $\Gamma = G(H^*) = Alg(H, k)$. By definition, n(q)is commutative, so Γ is an abelian group. Moreover, $|\Gamma| = \dim(n(q)) = p^n$, and by LEM 3.4, ord (q) = p for any nontrivial element $q \in \Gamma$. Therefore, $\Gamma \cong (\mathbb{Z}/p\mathbb{Z})^n$.

<u>RMK</u>. There is also a dual notion of semi-simplicity for coalgebras. Namely, one can define simple coalgebras and simple / completely reducible comodules of a coalgebra in the same way as one did for algebras and modules. One can show that a coalgebra is a direct sum of simple coalgebras if and only if every comodule is completely reducible.

For example, $k \in i$ s cosenvisimple for any group G. since each $g \in G$ generates $a \quad 1 - im' 1 \quad subcoalgebra \quad kg \subseteq k \in G$, which is simple. When G is finite, $(k \in)^* \cong k^{\otimes n}$ is certainly semi-simple.

For a Hopf algebra H of arbitrary dinsension, one can generalize the aution of a left/sight cointegral in H^* (note that H^* itself may not be a Hopf algebra as dim(H) can be ∞): such an element $\lambda \in H^*$ satisfies $f \lambda = f(I_H) \lambda$ for all $f \in H^*$. For example, let G be a compact stopological group, and H = R(G) be the Hopf algebra of continuous complex-valued representative functions on G. Consider the Haar measure τ on G, and define $\lambda \in H^*$ by $\lambda(h) := \int_G h(x) d\tau(x)$. The translation invariance of τ and Peter-Weyl imply that λ is a cointegral in the above Asmae.

The dual Maschke's Theorem states that an arbitrary Hopf algebra is cosemisimple if and only if $\exists \lambda \in H^*$ cointegral s.t. $\lambda(1_H) = 1$. More structures of comodules and coalgebras will be discussed in the next chapter.

distingmished group like elements.