Lecture 9

Last time : commutative Hopf algebra, restricted Lie algebra

Goal : explain two theorems of Larson-Radford (conjectured by Kaplansky)

Assume char
$$(lk) = 0$$
, H is a finite-dim'l Hopf algebra / lk . In this case, H* is
semisimple if and only if H is cosemisimple. We will sketch the proof of :

THM 4.1
$$S^* = id_H$$
 if and only if H is semi-simple and co-semi-simple.
(H* is semi-simple)

We present a simplified version of the proof due to Schneider, who used properties of Frobenius algebras in an essential way. So we first recall some basic facts on Frobenius algebras u/out proof.

Let A be any finite-dim't the algebra, then
•
$$A^*$$
 is a left A-module via
 $A \otimes A^* \rightarrow A^*$, $a \otimes f \mapsto a \rightarrow f$, $(a \rightarrow f)(b) = f(ba)$

•
$$A^*$$
 is a night A -module via
 $A^* \otimes A \rightarrow A^*$, $f \otimes a \mapsto f \leftarrow a$, $(f \leftarrow a)(b) = f(ab)$
for all $f \in A^*$, $a, b \in A$.

The proof of the following lemma can be found in [Curtis-Reiner, Methods of Representation Theory Vol. I, Sec. 9A, 9B].

LEM 4.3 Let A be a finite dimit algebra of dimension N. TFAE.
• A is a Frobenius algebra.
• If
$$\in A^*$$
 s.t. the map $\overline{\Phi} : A \rightarrow A^*$, $\overline{\Phi}(a) := (a \rightarrow f)$, is a
left A - module inomorphism.
• If $\in A^*$ s.t. the map $\overline{\Phi} : A \rightarrow A^*$, $\overline{\Psi}(a) := (f \leftarrow a)$, is a
right A - module isomorphism.
• If $\in A^*$ and γ_i , $l_i \in A$, $i = 1, ..., n$, s.t. for any $a \in A$, we have
 $a = \sum_{i=1}^{n} \gamma_i f(l_i a_i) = \sum_{i=1}^{n} f(a \gamma_i) l_i$.

The tuple (f, r_i, l_i) is called a Frobenins system for A. Given such a non-deg. system, an associative bilinean form on A is given by (a,b) := f(ab). Moreover, the elements r_i , l_i form a dual basis w.r.t. this form, i.e., $(l_i, r_j) = \delta i j$. Such a dual basis is not surjece, but the element $\sum_{i=1}^{n} r_i \otimes l_i$ is surjecely determined by the bilinear form.

Now let H be a finite-dim't Hopf algebra / K. Recall the definition of the distinguished grouplike elements in H and H^{*}: • $\alpha \in G(H^*)$ s.t. $\Lambda^L h = \alpha(h) \Lambda^L$, $\forall o \neq \Lambda^L \in \int_H^L$, $h \in H$. • $g \in G(H)$ s.t. $(\lambda^L \otimes id) \Delta(h) = \lambda^L(h)g$ $\forall o \neq \lambda^L \in \int_H^L *$, $h \in H$.

LEM 4.4. Choose 0 = x = SH#.

(1) Let
$$\Lambda \in H$$
 be such that $\lambda^{L} \leftarrow \Lambda = \varepsilon$, then $\Lambda \in \int_{H}^{K}$ and $\lambda^{L}(\Lambda) = 1$.
(2) Let $g \in H$ be the distinguished group-like element, then $g \rightarrow \lambda^{L} \in \int_{H}^{R}$, and similarly, $\lambda^{L} \leftarrow g \in \int_{H}^{R}$. Moreover, for any $t \in \int_{H}^{R}$, we have $(g \rightarrow \lambda^{L})(t) = \lambda(t)$.

P. (1) By THM 1.4, H is a Frobenius algebra w/ the bilinual form given by λ^{L} . By LEM 4.3, $A \rightarrow A^{+}$, $\chi \mapsto (\chi^{L} - \chi)$ is an A-module isom. Since for any heH, $\chi^{L} - (\Lambda h) = (\chi^{L} - \Lambda) - h = \varepsilon - h = \varepsilon(h) \varepsilon = \chi^{L} - (\varepsilon(h) \Lambda)$, so $\Lambda \in \int_{H}^{R}$. Moreover, $\chi^{L}(\Lambda) = (\chi - \Lambda) (t_{H}) = \varepsilon(t_{H}) = 1$. (2) By def, for any $f \in H^{*}$, $f \chi^{L} = f(t_{H}) \chi^{L}$, and $\chi^{L} f = f(t_{H}) \chi^{L}$. Now $\varepsilon^{*}(f)$

g is grouplike, so for any 4,7 EH*, we have

<u>DEF</u>. Let A be a finite dim'l Frobunino algebra w/ non-deg associative bilinear form (·, ·). The Nakayama automorphism of A is the map $N: A \rightarrow A$ determined by (a, b) = (b, N(a)) for all a, b $\in A$. Note that given a Frobenius system (f, r_i, l_i) of a Frobenius algebra, then the Nakayama automorphism depends only on f.

Recall that for any coalgebra C, C* acts on C from left and right via

$$f \rightarrow c := \Sigma f(c_2) C_1$$
, $c \leftarrow f = \Sigma f(c_1) C_2$
For a finite-dim'l Hopf algebra, this is precisely the action of H* on H = H**
mentioned above. We state the following results of Schneider w/out proof, although
it is the key technical result we need to prove THM 4.1, 4.2.
(see Schneider, Lectures on Hopf algebras)

(set Schneider, Lectures in hopf algebra w/ distinguished geoup-like
$$\alpha \in H^{*}$$
.
Prop 4.6. Let H be a finite-dimil Hopf algebra w/ distinguished geoup-like $\alpha \in H^{*}$.
Choose $\lambda^{L} \in \int_{H}^{L} *$ and $\Lambda^{R} \in \int_{H}^{R}$ s.t. $\lambda^{L}(\Lambda^{R}) = 1$. Then $(\lambda^{L}, S(\Lambda^{R}_{1}), \Lambda^{R}_{2})$
is a Frobenino system for H w/ associated Nakagama automorphism
 $\Lambda^{L}(h) = \alpha^{-1} \rightarrow S^{a}(h)$ for all $h \in H$.

<u>Prop 4.7</u> Let H, a, g be as above. Choose $\lambda^{P} \in \int_{H^{*}}^{P}$ and $\Lambda^{R} \in \int_{H}^{P}$ s.t. $\lambda^{P}(\Lambda^{R}) = 1$, then

•
$$(\lambda^{R}, S^{-1}(\Lambda^{R}_{a}), \Lambda^{R}_{1})$$
 is a Frobernins system for H w/ the corresponding
Nakayama automorphism $N(h) = \overline{S^{a}}(h) \leftarrow \alpha^{-1}$ for all $h \in H$.
• Another Frobenins system for H is $(\lambda^{R}, (S\Lambda^{R}_{1})g^{-1}, \Lambda^{R}_{a})$ w/ the associated
Nakayama automorphism $N(h) = g^{-1}(\alpha^{-1} \rightarrow S^{a}(h))g$.

Comparing the two Nakayanna automorphisms above, we obtain a shorter proof of the following crucial result of Radford.

THM 4.8. Let H,
$$\alpha$$
, g be as above. Then for all $h \in H$, we have $S^{4}(h) = g(\alpha \rightarrow h \leftarrow \alpha^{-1})g^{-1}$.

for all $x \in H$. By Prop 4.7, $S^{-a}(h) \leftarrow \alpha^{-1} = g^{-1}(\alpha^{-1} \rightarrow S^{a}(h))g$ Applying S^{a} and conjugating by g, we see that

 $g \left[S^{2} \left(S^{-2} \left(h \right) \leftarrow \alpha^{-1} \right) \right] g^{-1} = g \left[h \leftarrow \alpha^{-1} \right] g^{-1} \right]$ $g \left[S^{2} \left(g^{-1} \left(\alpha^{-1} \rightarrow S^{2} \left(h \right) \right) g \right) \right] g^{-1} = \alpha^{-1} \rightarrow S^{4} \left(h \right)$ $J_{0} \qquad g \left(h \leftarrow \alpha^{-1} \right) g^{-1} = \alpha^{-1} \rightarrow S^{4} \left(h \right). \quad F_{inally}, \quad apply \quad \alpha \rightarrow on \quad both$ $Sides, we have \qquad S^{4} \left(h \right) = g \left(\alpha \rightarrow h \leftarrow \alpha^{-1} \right) g^{-1}.$

Recall by Cox. 2.6, if H and H* are both semi-simple, then $g = 1_H$ and $\alpha = \varepsilon$. In this case, $S^4 = id$. Similar results hold for weak Hopf algebras (or fusion categories), and they can be used to prove properties of global dimensions of such categories.

To show in the case when H and H* are semisimple, then $S^a = id$, it suffices to show that -1 cannot be an eigenvalue of S^a , and we need some facts about traces.

Recall that for any finite-dim'l vector space
$$V$$
, we have $V \stackrel{*}{\cong} V \stackrel{\cong}{\cong} End_{\mu}(V)$.
wine $(9 \otimes v) (w) := 9(w) v$. Under this isom, the linear trace map.
 $Tr_{V} : End_{\mu}(V) \rightarrow k$ can be explicitly written as $Tr_{V}(9 \otimes v) = 9(v)$.
finite dim'l

<u>LEM 4.9</u>. Let A be a Frobenino algebra w/ Frobenino system (f, r_i, l_i) . Let $e \in A$ be such that $e^a = ce$ for some $c \in k$. Then for any $F \in End_k (eA)$, we have $c \cdot Tr_{eA} (F) = \sum_i f(F(el_i) r_i)$

 $\frac{P_{F}}{i} \quad For \quad auy \quad x \in A, \quad ex = \sum_{i} f(exr_{i}) \ l_{i} \quad by \ def. \quad Thus,$

$$e^{a}x = \sum_{i} f(exr_{i}) e l_{i}$$
, and so $cF(ex) = F(e^{a}x) = F(e^{a}x)$
= $\sum_{i} f(exr_{i}) F(el_{i})$. Using the isom $End_{k}(V) \cong V^{*} \otimes V$ above for $V = eA$,

we have CF corresponds to $\sum_{i} f(\cdot, \tau_i) \otimes F(eli)$, and so

$$c Tr_{eA}(F) = \sum_{i} f(F(el_i) r_i)$$